Spatial statistical analysis and selection of genotypes in plant breeding
Autor(a) principal: | |
---|---|
Data de Publicação: | 2005 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Pesquisa Agropecuária Brasileira (Online) |
Texto Completo: | https://seer.sct.embrapa.br/index.php/pab/article/view/6930 |
Resumo: | The objective of this study was to evaluate the efficiency of spatial statistical analysis in the selection of genotypes in a plant breeding program and, particularly, to demonstrate the benefits of the approach when experimental observations are not spatially independent. The basic material of this study was a yield trial of soybean lines, with five check varieties (of fixed effect) and 110 test lines (of random effects), in an augmented block design. The spatial analysis used a random field linear model (RFML), with a covariance function estimated from the residuals of the analysis considering independent errors. Results showed a residual autocorrelation of significant magnitude and extension (range), which allowed a better discrimination among genotypes (increase of the power of statistical tests, reduction in the standard errors of estimates and predictors, and a greater amplitude of predictor values) when the spatial analysis was applied. Furthermore, the spatial analysis led to a different ranking of the genetic materials, in comparison with the non-spatial analysis, and a selection less influenced by local variation effects was obtained. |
id |
EMBRAPA-4_bb3f2442ba5d06e56b790bcc20e079b7 |
---|---|
oai_identifier_str |
oai:ojs.seer.sct.embrapa.br:article/6930 |
network_acronym_str |
EMBRAPA-4 |
network_name_str |
Pesquisa Agropecuária Brasileira (Online) |
repository_id_str |
|
spelling |
Spatial statistical analysis and selection of genotypes in plant breedingSeleção de genótipos e análise estatística espacial no melhoramento de plantasaugmented design; mixed model; information recovery; autocorrelation; correlated data; geostatisticsdelineamento aumentado; modelo misto; recuperação de informação; autocorrelação; dados correlacionados; geoestatísticaThe objective of this study was to evaluate the efficiency of spatial statistical analysis in the selection of genotypes in a plant breeding program and, particularly, to demonstrate the benefits of the approach when experimental observations are not spatially independent. The basic material of this study was a yield trial of soybean lines, with five check varieties (of fixed effect) and 110 test lines (of random effects), in an augmented block design. The spatial analysis used a random field linear model (RFML), with a covariance function estimated from the residuals of the analysis considering independent errors. Results showed a residual autocorrelation of significant magnitude and extension (range), which allowed a better discrimination among genotypes (increase of the power of statistical tests, reduction in the standard errors of estimates and predictors, and a greater amplitude of predictor values) when the spatial analysis was applied. Furthermore, the spatial analysis led to a different ranking of the genetic materials, in comparison with the non-spatial analysis, and a selection less influenced by local variation effects was obtained.O objetivo deste trabalho foi avaliar a eficiência da análise estatística espacial na seleção de genótipos de plantas num programa de melhoramento. Buscou-se demonstrar os benefícios potenciais dessa abordagem quando as observações experimentais não são espacialmente independentes. O material consistiu de um ensaio de competição de linhagens de soja, com cinco cultivares testemunhas (de efeitos fixos) e 110 novos genótipos (de efeitos aleatórios), delineado em blocos aumentados. O ajuste espacial foi feito pelo modelo linear de campo aleatório (RFLM), com função de autocovariância estimada a partir dos resíduos da análise sob erros independentes. Os resultados apontaram uma autocorrelação residual de magnitude e alcance significativos, o que garantiu à abordagem espacial uma melhoria considerável na discriminação dos tratamentos genéticos – aumento do poder dos testes estatísticos, redução nos erros padrão de estimativas e de preditores e alargamento na amplitude das predições genotípicas. A análise espacial levou a um diferente ordenamento das linhagens em relação à análise não espacial e, finalmente, a uma seleção menos influenciada por efeitos da variação local.Pesquisa Agropecuaria BrasileiraPesquisa Agropecuária BrasileiraDuarte, João BatistaVencovsky, Roland2005-02-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://seer.sct.embrapa.br/index.php/pab/article/view/6930Pesquisa Agropecuaria Brasileira; v.40, n.2, fev. 2005; 107-114Pesquisa Agropecuária Brasileira; v.40, n.2, fev. 2005; 107-1141678-39210100-104xreponame:Pesquisa Agropecuária Brasileira (Online)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPAenghttps://seer.sct.embrapa.br/index.php/pab/article/view/6930/3978info:eu-repo/semantics/openAccess2010-09-09T18:38:37Zoai:ojs.seer.sct.embrapa.br:article/6930Revistahttp://seer.sct.embrapa.br/index.php/pabPRIhttps://old.scielo.br/oai/scielo-oai.phppab@sct.embrapa.br || sct.pab@embrapa.br1678-39210100-204Xopendoar:2010-09-09T18:38:37Pesquisa Agropecuária Brasileira (Online) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
Spatial statistical analysis and selection of genotypes in plant breeding Seleção de genótipos e análise estatística espacial no melhoramento de plantas |
title |
Spatial statistical analysis and selection of genotypes in plant breeding |
spellingShingle |
Spatial statistical analysis and selection of genotypes in plant breeding Duarte, João Batista augmented design; mixed model; information recovery; autocorrelation; correlated data; geostatistics delineamento aumentado; modelo misto; recuperação de informação; autocorrelação; dados correlacionados; geoestatística |
title_short |
Spatial statistical analysis and selection of genotypes in plant breeding |
title_full |
Spatial statistical analysis and selection of genotypes in plant breeding |
title_fullStr |
Spatial statistical analysis and selection of genotypes in plant breeding |
title_full_unstemmed |
Spatial statistical analysis and selection of genotypes in plant breeding |
title_sort |
Spatial statistical analysis and selection of genotypes in plant breeding |
author |
Duarte, João Batista |
author_facet |
Duarte, João Batista Vencovsky, Roland |
author_role |
author |
author2 |
Vencovsky, Roland |
author2_role |
author |
dc.contributor.none.fl_str_mv |
|
dc.contributor.author.fl_str_mv |
Duarte, João Batista Vencovsky, Roland |
dc.subject.por.fl_str_mv |
augmented design; mixed model; information recovery; autocorrelation; correlated data; geostatistics delineamento aumentado; modelo misto; recuperação de informação; autocorrelação; dados correlacionados; geoestatística |
topic |
augmented design; mixed model; information recovery; autocorrelation; correlated data; geostatistics delineamento aumentado; modelo misto; recuperação de informação; autocorrelação; dados correlacionados; geoestatística |
description |
The objective of this study was to evaluate the efficiency of spatial statistical analysis in the selection of genotypes in a plant breeding program and, particularly, to demonstrate the benefits of the approach when experimental observations are not spatially independent. The basic material of this study was a yield trial of soybean lines, with five check varieties (of fixed effect) and 110 test lines (of random effects), in an augmented block design. The spatial analysis used a random field linear model (RFML), with a covariance function estimated from the residuals of the analysis considering independent errors. Results showed a residual autocorrelation of significant magnitude and extension (range), which allowed a better discrimination among genotypes (increase of the power of statistical tests, reduction in the standard errors of estimates and predictors, and a greater amplitude of predictor values) when the spatial analysis was applied. Furthermore, the spatial analysis led to a different ranking of the genetic materials, in comparison with the non-spatial analysis, and a selection less influenced by local variation effects was obtained. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005-02-01 |
dc.type.none.fl_str_mv |
|
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://seer.sct.embrapa.br/index.php/pab/article/view/6930 |
url |
https://seer.sct.embrapa.br/index.php/pab/article/view/6930 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://seer.sct.embrapa.br/index.php/pab/article/view/6930/3978 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Pesquisa Agropecuaria Brasileira Pesquisa Agropecuária Brasileira |
publisher.none.fl_str_mv |
Pesquisa Agropecuaria Brasileira Pesquisa Agropecuária Brasileira |
dc.source.none.fl_str_mv |
Pesquisa Agropecuaria Brasileira; v.40, n.2, fev. 2005; 107-114 Pesquisa Agropecuária Brasileira; v.40, n.2, fev. 2005; 107-114 1678-3921 0100-104x reponame:Pesquisa Agropecuária Brasileira (Online) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Pesquisa Agropecuária Brasileira (Online) |
collection |
Pesquisa Agropecuária Brasileira (Online) |
repository.name.fl_str_mv |
Pesquisa Agropecuária Brasileira (Online) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
pab@sct.embrapa.br || sct.pab@embrapa.br |
_version_ |
1793416687043739648 |