Estimation of soybean leaf wetness from meteorological variables

Detalhes bibliográficos
Autor(a) principal: Igarashi, Wagner Teigi
Data de Publicação: 2018
Outros Autores: Aguiar e Silva, Marcelo Augusto, França, José Alexandre de, Igarashi, Seiji, Abi Saab, Otávio Jorge Grigoli
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Pesquisa Agropecuária Brasileira (Online)
Texto Completo: https://seer.sct.embrapa.br/index.php/pab/article/view/26129
Resumo: The objective of this work was to determine models for the estimation of leaf wetness percentage at three heights in the soybean (Glycine max) canopy, using meteorological variables from stations installed at the crop site and at an agrometeorological station. The experiment was conducted in three harvest seasons, in an area cropped with soybean, in the municipality of Londrina, in the state of Paraná, Brazil. To collect the meteorological variables, electronic trees were installed at four heights (0.3, 0.6, 0.9, and 1.7 m) in the crop and a station was installed in an agrometeorological station. The data were separated according to days with and without rain, and the analyses of correlation and of simple and multiple regressions were carried out, in order to obtain models with equations for leaf wetness estimation. Most of the equations that did not use the data of the sensors installed at 1.7 m, especially those of the models based on variables only from the agrometeorological station, presented low reliability. The models obtained with meteorological data only from the soybean crop show high reliability and use a lower amount of variables, which makes them a good alternative for wetness estimation. 
id EMBRAPA-4_d284218b062a81a4cfe3154dc14d365e
oai_identifier_str oai:ojs.seer.sct.embrapa.br:article/26129
network_acronym_str EMBRAPA-4
network_name_str Pesquisa Agropecuária Brasileira (Online)
repository_id_str
spelling Estimation of soybean leaf wetness from meteorological variablesEstimativa do molhamento foliar da soja a partir de variáveis meteorológicasGlycine max; empirical models; leaf wetness sensors; percentage of leaf wetnessGlycine max; modelos empíricos; sensores de molhamento foliar; percentagem de molhamento foliarThe objective of this work was to determine models for the estimation of leaf wetness percentage at three heights in the soybean (Glycine max) canopy, using meteorological variables from stations installed at the crop site and at an agrometeorological station. The experiment was conducted in three harvest seasons, in an area cropped with soybean, in the municipality of Londrina, in the state of Paraná, Brazil. To collect the meteorological variables, electronic trees were installed at four heights (0.3, 0.6, 0.9, and 1.7 m) in the crop and a station was installed in an agrometeorological station. The data were separated according to days with and without rain, and the analyses of correlation and of simple and multiple regressions were carried out, in order to obtain models with equations for leaf wetness estimation. Most of the equations that did not use the data of the sensors installed at 1.7 m, especially those of the models based on variables only from the agrometeorological station, presented low reliability. The models obtained with meteorological data only from the soybean crop show high reliability and use a lower amount of variables, which makes them a good alternative for wetness estimation. O objetivo deste trabalho foi determinar modelos para estimativa da percentagem de molhamento foliar em três alturas no dossel da soja (Glycine max), a partir de variáveis meteorológicas de estações instaladas na cultura e em posto agrometeorológico. O experimento foi conduzido em três safras agrícolas, em área com cultura de soja, no Município de Londrina, PR. Para a coleta das variáveis meteorológicas, foram instaladas árvores eletrônicas com sensores de molhamento, em quatro alturas (0,3, 0,6, 0,9 e 1,7 m), na cultura e uma estação em posto agrometeorológico. Separaram-se os dados de dias com e sem chuva, e realizaram-se as análises de correlação e de regressões simples e múltipla, para obter modelos com equações de estimativa de molhamento. A maioria das equações que não utilizou os dados dos sensores instalados a 1,7 m, principalmente as dos modelos baseados apenas nas variáveis do posto agrometeorológico, apresentou baixa confiabilidade. Os modelos obtidos a partir de dados meteorológicos unicamente da cultura de soja apresentam alta confiabilidade e utilizam menor quantidade de variáveis, o que os torna boa alternativa para estimativa de molhamento.Pesquisa Agropecuaria BrasileiraPesquisa Agropecuária BrasileiraUniversidade Estadual de LondrinaCAPESIgarashi, Wagner TeigiAguiar e Silva, Marcelo AugustoFrança, José Alexandre deIgarashi, SeijiAbi Saab, Otávio Jorge Grigoli2018-11-26info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://seer.sct.embrapa.br/index.php/pab/article/view/26129Pesquisa Agropecuaria Brasileira; v.53, n.10, out. 2018; 1087-1092Pesquisa Agropecuária Brasileira; v.53, n.10, out. 2018; 1087-10921678-39210100-104xreponame:Pesquisa Agropecuária Brasileira (Online)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPAenghttps://seer.sct.embrapa.br/index.php/pab/article/view/26129/14322https://seer.sct.embrapa.br/index.php/pab/article/downloadSuppFile/26129/17818Direitos autorais 2018 Pesquisa Agropecuária Brasileirainfo:eu-repo/semantics/openAccess2018-12-03T13:13:48Zoai:ojs.seer.sct.embrapa.br:article/26129Revistahttp://seer.sct.embrapa.br/index.php/pabPRIhttps://old.scielo.br/oai/scielo-oai.phppab@sct.embrapa.br || sct.pab@embrapa.br1678-39210100-204Xopendoar:2018-12-03T13:13:48Pesquisa Agropecuária Brasileira (Online) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Estimation of soybean leaf wetness from meteorological variables
Estimativa do molhamento foliar da soja a partir de variáveis meteorológicas
title Estimation of soybean leaf wetness from meteorological variables
spellingShingle Estimation of soybean leaf wetness from meteorological variables
Igarashi, Wagner Teigi
Glycine max; empirical models; leaf wetness sensors; percentage of leaf wetness
Glycine max; modelos empíricos; sensores de molhamento foliar; percentagem de molhamento foliar
title_short Estimation of soybean leaf wetness from meteorological variables
title_full Estimation of soybean leaf wetness from meteorological variables
title_fullStr Estimation of soybean leaf wetness from meteorological variables
title_full_unstemmed Estimation of soybean leaf wetness from meteorological variables
title_sort Estimation of soybean leaf wetness from meteorological variables
author Igarashi, Wagner Teigi
author_facet Igarashi, Wagner Teigi
Aguiar e Silva, Marcelo Augusto
França, José Alexandre de
Igarashi, Seiji
Abi Saab, Otávio Jorge Grigoli
author_role author
author2 Aguiar e Silva, Marcelo Augusto
França, José Alexandre de
Igarashi, Seiji
Abi Saab, Otávio Jorge Grigoli
author2_role author
author
author
author
dc.contributor.none.fl_str_mv
Universidade Estadual de Londrina
CAPES
dc.contributor.author.fl_str_mv Igarashi, Wagner Teigi
Aguiar e Silva, Marcelo Augusto
França, José Alexandre de
Igarashi, Seiji
Abi Saab, Otávio Jorge Grigoli
dc.subject.por.fl_str_mv Glycine max; empirical models; leaf wetness sensors; percentage of leaf wetness
Glycine max; modelos empíricos; sensores de molhamento foliar; percentagem de molhamento foliar
topic Glycine max; empirical models; leaf wetness sensors; percentage of leaf wetness
Glycine max; modelos empíricos; sensores de molhamento foliar; percentagem de molhamento foliar
description The objective of this work was to determine models for the estimation of leaf wetness percentage at three heights in the soybean (Glycine max) canopy, using meteorological variables from stations installed at the crop site and at an agrometeorological station. The experiment was conducted in three harvest seasons, in an area cropped with soybean, in the municipality of Londrina, in the state of Paraná, Brazil. To collect the meteorological variables, electronic trees were installed at four heights (0.3, 0.6, 0.9, and 1.7 m) in the crop and a station was installed in an agrometeorological station. The data were separated according to days with and without rain, and the analyses of correlation and of simple and multiple regressions were carried out, in order to obtain models with equations for leaf wetness estimation. Most of the equations that did not use the data of the sensors installed at 1.7 m, especially those of the models based on variables only from the agrometeorological station, presented low reliability. The models obtained with meteorological data only from the soybean crop show high reliability and use a lower amount of variables, which makes them a good alternative for wetness estimation. 
publishDate 2018
dc.date.none.fl_str_mv 2018-11-26
dc.type.none.fl_str_mv
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://seer.sct.embrapa.br/index.php/pab/article/view/26129
url https://seer.sct.embrapa.br/index.php/pab/article/view/26129
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://seer.sct.embrapa.br/index.php/pab/article/view/26129/14322
https://seer.sct.embrapa.br/index.php/pab/article/downloadSuppFile/26129/17818
dc.rights.driver.fl_str_mv Direitos autorais 2018 Pesquisa Agropecuária Brasileira
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Direitos autorais 2018 Pesquisa Agropecuária Brasileira
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Pesquisa Agropecuaria Brasileira
Pesquisa Agropecuária Brasileira
publisher.none.fl_str_mv Pesquisa Agropecuaria Brasileira
Pesquisa Agropecuária Brasileira
dc.source.none.fl_str_mv Pesquisa Agropecuaria Brasileira; v.53, n.10, out. 2018; 1087-1092
Pesquisa Agropecuária Brasileira; v.53, n.10, out. 2018; 1087-1092
1678-3921
0100-104x
reponame:Pesquisa Agropecuária Brasileira (Online)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Pesquisa Agropecuária Brasileira (Online)
collection Pesquisa Agropecuária Brasileira (Online)
repository.name.fl_str_mv Pesquisa Agropecuária Brasileira (Online) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv pab@sct.embrapa.br || sct.pab@embrapa.br
_version_ 1793416686067515392