Kohonen’s self-organizing maps for the study of genetic dissimilarity among soybean cultivars and genotypes

Detalhes bibliográficos
Autor(a) principal: Sá, Ludimila Geiciane de
Data de Publicação: 2022
Outros Autores: Azevedo, Alcinei Mistico, Albuquerque, Carlos Juliano Brant, Valadares, Nermy Ribeiro, Brito, Orlando Gonçalves, Fernandes, Ana Clara Gonçalves, Aspiazú, Ignacio
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Pesquisa Agropecuária Brasileira (Online)
Texto Completo: https://seer.sct.embrapa.br/index.php/pab/article/view/27089
Resumo: The objective of this work was to evaluate the genetic dissimilarity between soybean cultivars and genotypes for the selection of parents, as well as to propose a new method for using Kohonen’s self-organizing maps (SOMs) and to test its efficiency through Anderson’s discriminant analysis. The morphoagronomic descriptors of soybean cultivars and genotypes were evaluated. For data analysis, SOM-type artificial neural networks were used. The proposed method allowed the determination of the best network architecture in a nonsubjective way. Furthermore, at the beginning of training, it was possible to mitigate the randomness effect of the synaptic weights on the formed clusters. Six dissimilar clusters were formed; therefore, there is genetic dissimilarity between soybean cultivars and genotypes. Cultivars C25, C8, and C13 can be combined with C36, C31, C32, and C33 because they show good yield-related attributes and high dissimilarity. The proposed methodology is advantageous in comparison with the use of traditional SOMs, besides being efficient due to clustering consistency according to Anderson’s discriminant analysis.
id EMBRAPA-4_d56c7a934a98921ff647845a546e9423
oai_identifier_str oai:ojs.seer.sct.embrapa.br:article/27089
network_acronym_str EMBRAPA-4
network_name_str Pesquisa Agropecuária Brasileira (Online)
repository_id_str
spelling Kohonen’s self-organizing maps for the study of genetic dissimilarity among soybean cultivars and genotypesMapas auto-organizáveis de Kohonen no estudo da dissimilaridade genética entre cultivares e genótipos de sojaGlycine max; artificial neural networks; multivariate analysis; plant breedingGlycine max; redes neurais artificiais; análise multivariada; melhoramento genético vegetalThe objective of this work was to evaluate the genetic dissimilarity between soybean cultivars and genotypes for the selection of parents, as well as to propose a new method for using Kohonen’s self-organizing maps (SOMs) and to test its efficiency through Anderson’s discriminant analysis. The morphoagronomic descriptors of soybean cultivars and genotypes were evaluated. For data analysis, SOM-type artificial neural networks were used. The proposed method allowed the determination of the best network architecture in a nonsubjective way. Furthermore, at the beginning of training, it was possible to mitigate the randomness effect of the synaptic weights on the formed clusters. Six dissimilar clusters were formed; therefore, there is genetic dissimilarity between soybean cultivars and genotypes. Cultivars C25, C8, and C13 can be combined with C36, C31, C32, and C33 because they show good yield-related attributes and high dissimilarity. The proposed methodology is advantageous in comparison with the use of traditional SOMs, besides being efficient due to clustering consistency according to Anderson’s discriminant analysis.O objetivo deste trabalho foi avaliar a dissimilaridade genética entre cultivares e genótipos de soja para a seleção de genitores, bem como propor um novo método para a utilização de mapas auto-organizáveis de Kohonen (SOMs) e testar sua eficiência por meio da análise discriminante de Anderson. Foram avaliados os descritores morfoagronômicos de cultivares e genótipos de soja. Para análise dos dados, utilizaram-se redes neurais artificiais do tipo SOM. O método proposto permitiu a determinação da melhor arquitetura de rede de forma não subjetiva. Além disso, no início do treinamento, foi possível mitigar o efeito da aleatoriedade dos pesos sinápticos sobre os grupos formados. Foram formados seis grupos dissimilares; portanto, há dissimilaridade genética entre cultivares e genótipos de soja. As cultivares C25, C8 e C13 podem ser combinadas com as C36, C31, C32 e C33, por apresentarem bons atributos de produtividade e alta dissimilaridade. A metodologia proposta é vantajosa em comparação ao uso de SOMs tradicionais e se mostrou eficiente devido à consistência dos agrupamentos de acordo com a análise discriminante de Anderson.Pesquisa Agropecuaria BrasileiraPesquisa Agropecuária BrasileiraCoordenação de Aperfeiçoamento de Pessoal de Nível SuperiorFundação de Amparo à Pesquisa do Estado de Minas GeraisConselho Nacional de Desenvolvimento Científico e TecnológicoCoordenação de Aperfeiçoamento de Pessoal de Nível SuperiorFundação de Amparo à Pesquisa do Estado de Minas GeraisConselho Nacional de Desenvolvimento Científico e TecnológicoSá, Ludimila Geiciane deAzevedo, Alcinei MisticoAlbuquerque, Carlos Juliano BrantValadares, Nermy RibeiroBrito, Orlando GonçalvesFernandes, Ana Clara GonçalvesAspiazú, Ignacio2022-07-22info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://seer.sct.embrapa.br/index.php/pab/article/view/27089Pesquisa Agropecuaria Brasileira; V.57, Jan./Dec., 2022: Publicação contínua em volume anual; e02722Pesquisa Agropecuária Brasileira; V.57, Jan./Dec., 2022: Publicação contínua em volume anual; e027221678-39210100-104xreponame:Pesquisa Agropecuária Brasileira (Online)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPAenghttps://seer.sct.embrapa.br/index.php/pab/article/view/27089/15030Direitos autorais 2022 Pesquisa Agropecuária Brasileirainfo:eu-repo/semantics/openAccess2023-01-23T13:40:20Zoai:ojs.seer.sct.embrapa.br:article/27089Revistahttp://seer.sct.embrapa.br/index.php/pabPRIhttps://old.scielo.br/oai/scielo-oai.phppab@sct.embrapa.br || sct.pab@embrapa.br1678-39210100-204Xopendoar:2023-01-23T13:40:20Pesquisa Agropecuária Brasileira (Online) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Kohonen’s self-organizing maps for the study of genetic dissimilarity among soybean cultivars and genotypes
Mapas auto-organizáveis de Kohonen no estudo da dissimilaridade genética entre cultivares e genótipos de soja
title Kohonen’s self-organizing maps for the study of genetic dissimilarity among soybean cultivars and genotypes
spellingShingle Kohonen’s self-organizing maps for the study of genetic dissimilarity among soybean cultivars and genotypes
Sá, Ludimila Geiciane de
Glycine max; artificial neural networks; multivariate analysis; plant breeding
Glycine max; redes neurais artificiais; análise multivariada; melhoramento genético vegetal
title_short Kohonen’s self-organizing maps for the study of genetic dissimilarity among soybean cultivars and genotypes
title_full Kohonen’s self-organizing maps for the study of genetic dissimilarity among soybean cultivars and genotypes
title_fullStr Kohonen’s self-organizing maps for the study of genetic dissimilarity among soybean cultivars and genotypes
title_full_unstemmed Kohonen’s self-organizing maps for the study of genetic dissimilarity among soybean cultivars and genotypes
title_sort Kohonen’s self-organizing maps for the study of genetic dissimilarity among soybean cultivars and genotypes
author Sá, Ludimila Geiciane de
author_facet Sá, Ludimila Geiciane de
Azevedo, Alcinei Mistico
Albuquerque, Carlos Juliano Brant
Valadares, Nermy Ribeiro
Brito, Orlando Gonçalves
Fernandes, Ana Clara Gonçalves
Aspiazú, Ignacio
author_role author
author2 Azevedo, Alcinei Mistico
Albuquerque, Carlos Juliano Brant
Valadares, Nermy Ribeiro
Brito, Orlando Gonçalves
Fernandes, Ana Clara Gonçalves
Aspiazú, Ignacio
author2_role author
author
author
author
author
author
dc.contributor.none.fl_str_mv Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Fundação de Amparo à Pesquisa do Estado de Minas Gerais
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Fundação de Amparo à Pesquisa do Estado de Minas Gerais
Conselho Nacional de Desenvolvimento Científico e Tecnológico
dc.contributor.author.fl_str_mv Sá, Ludimila Geiciane de
Azevedo, Alcinei Mistico
Albuquerque, Carlos Juliano Brant
Valadares, Nermy Ribeiro
Brito, Orlando Gonçalves
Fernandes, Ana Clara Gonçalves
Aspiazú, Ignacio
dc.subject.por.fl_str_mv Glycine max; artificial neural networks; multivariate analysis; plant breeding
Glycine max; redes neurais artificiais; análise multivariada; melhoramento genético vegetal
topic Glycine max; artificial neural networks; multivariate analysis; plant breeding
Glycine max; redes neurais artificiais; análise multivariada; melhoramento genético vegetal
description The objective of this work was to evaluate the genetic dissimilarity between soybean cultivars and genotypes for the selection of parents, as well as to propose a new method for using Kohonen’s self-organizing maps (SOMs) and to test its efficiency through Anderson’s discriminant analysis. The morphoagronomic descriptors of soybean cultivars and genotypes were evaluated. For data analysis, SOM-type artificial neural networks were used. The proposed method allowed the determination of the best network architecture in a nonsubjective way. Furthermore, at the beginning of training, it was possible to mitigate the randomness effect of the synaptic weights on the formed clusters. Six dissimilar clusters were formed; therefore, there is genetic dissimilarity between soybean cultivars and genotypes. Cultivars C25, C8, and C13 can be combined with C36, C31, C32, and C33 because they show good yield-related attributes and high dissimilarity. The proposed methodology is advantageous in comparison with the use of traditional SOMs, besides being efficient due to clustering consistency according to Anderson’s discriminant analysis.
publishDate 2022
dc.date.none.fl_str_mv 2022-07-22
dc.type.none.fl_str_mv
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://seer.sct.embrapa.br/index.php/pab/article/view/27089
url https://seer.sct.embrapa.br/index.php/pab/article/view/27089
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://seer.sct.embrapa.br/index.php/pab/article/view/27089/15030
dc.rights.driver.fl_str_mv Direitos autorais 2022 Pesquisa Agropecuária Brasileira
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Direitos autorais 2022 Pesquisa Agropecuária Brasileira
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Pesquisa Agropecuaria Brasileira
Pesquisa Agropecuária Brasileira
publisher.none.fl_str_mv Pesquisa Agropecuaria Brasileira
Pesquisa Agropecuária Brasileira
dc.source.none.fl_str_mv Pesquisa Agropecuaria Brasileira; V.57, Jan./Dec., 2022: Publicação contínua em volume anual; e02722
Pesquisa Agropecuária Brasileira; V.57, Jan./Dec., 2022: Publicação contínua em volume anual; e02722
1678-3921
0100-104x
reponame:Pesquisa Agropecuária Brasileira (Online)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Pesquisa Agropecuária Brasileira (Online)
collection Pesquisa Agropecuária Brasileira (Online)
repository.name.fl_str_mv Pesquisa Agropecuária Brasileira (Online) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv pab@sct.embrapa.br || sct.pab@embrapa.br
_version_ 1793416691698368512