Kohonen’s self-organizing maps for the study of genetic dissimilarity among soybean cultivars and genotypes
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Pesquisa Agropecuária Brasileira (Online) |
Texto Completo: | https://seer.sct.embrapa.br/index.php/pab/article/view/27089 |
Resumo: | The objective of this work was to evaluate the genetic dissimilarity between soybean cultivars and genotypes for the selection of parents, as well as to propose a new method for using Kohonen’s self-organizing maps (SOMs) and to test its efficiency through Anderson’s discriminant analysis. The morphoagronomic descriptors of soybean cultivars and genotypes were evaluated. For data analysis, SOM-type artificial neural networks were used. The proposed method allowed the determination of the best network architecture in a nonsubjective way. Furthermore, at the beginning of training, it was possible to mitigate the randomness effect of the synaptic weights on the formed clusters. Six dissimilar clusters were formed; therefore, there is genetic dissimilarity between soybean cultivars and genotypes. Cultivars C25, C8, and C13 can be combined with C36, C31, C32, and C33 because they show good yield-related attributes and high dissimilarity. The proposed methodology is advantageous in comparison with the use of traditional SOMs, besides being efficient due to clustering consistency according to Anderson’s discriminant analysis. |
id |
EMBRAPA-4_d56c7a934a98921ff647845a546e9423 |
---|---|
oai_identifier_str |
oai:ojs.seer.sct.embrapa.br:article/27089 |
network_acronym_str |
EMBRAPA-4 |
network_name_str |
Pesquisa Agropecuária Brasileira (Online) |
repository_id_str |
|
spelling |
Kohonen’s self-organizing maps for the study of genetic dissimilarity among soybean cultivars and genotypesMapas auto-organizáveis de Kohonen no estudo da dissimilaridade genética entre cultivares e genótipos de sojaGlycine max; artificial neural networks; multivariate analysis; plant breedingGlycine max; redes neurais artificiais; análise multivariada; melhoramento genético vegetalThe objective of this work was to evaluate the genetic dissimilarity between soybean cultivars and genotypes for the selection of parents, as well as to propose a new method for using Kohonen’s self-organizing maps (SOMs) and to test its efficiency through Anderson’s discriminant analysis. The morphoagronomic descriptors of soybean cultivars and genotypes were evaluated. For data analysis, SOM-type artificial neural networks were used. The proposed method allowed the determination of the best network architecture in a nonsubjective way. Furthermore, at the beginning of training, it was possible to mitigate the randomness effect of the synaptic weights on the formed clusters. Six dissimilar clusters were formed; therefore, there is genetic dissimilarity between soybean cultivars and genotypes. Cultivars C25, C8, and C13 can be combined with C36, C31, C32, and C33 because they show good yield-related attributes and high dissimilarity. The proposed methodology is advantageous in comparison with the use of traditional SOMs, besides being efficient due to clustering consistency according to Anderson’s discriminant analysis.O objetivo deste trabalho foi avaliar a dissimilaridade genética entre cultivares e genótipos de soja para a seleção de genitores, bem como propor um novo método para a utilização de mapas auto-organizáveis de Kohonen (SOMs) e testar sua eficiência por meio da análise discriminante de Anderson. Foram avaliados os descritores morfoagronômicos de cultivares e genótipos de soja. Para análise dos dados, utilizaram-se redes neurais artificiais do tipo SOM. O método proposto permitiu a determinação da melhor arquitetura de rede de forma não subjetiva. Além disso, no início do treinamento, foi possível mitigar o efeito da aleatoriedade dos pesos sinápticos sobre os grupos formados. Foram formados seis grupos dissimilares; portanto, há dissimilaridade genética entre cultivares e genótipos de soja. As cultivares C25, C8 e C13 podem ser combinadas com as C36, C31, C32 e C33, por apresentarem bons atributos de produtividade e alta dissimilaridade. A metodologia proposta é vantajosa em comparação ao uso de SOMs tradicionais e se mostrou eficiente devido à consistência dos agrupamentos de acordo com a análise discriminante de Anderson.Pesquisa Agropecuaria BrasileiraPesquisa Agropecuária BrasileiraCoordenação de Aperfeiçoamento de Pessoal de Nível SuperiorFundação de Amparo à Pesquisa do Estado de Minas GeraisConselho Nacional de Desenvolvimento Científico e TecnológicoCoordenação de Aperfeiçoamento de Pessoal de Nível SuperiorFundação de Amparo à Pesquisa do Estado de Minas GeraisConselho Nacional de Desenvolvimento Científico e TecnológicoSá, Ludimila Geiciane deAzevedo, Alcinei MisticoAlbuquerque, Carlos Juliano BrantValadares, Nermy RibeiroBrito, Orlando GonçalvesFernandes, Ana Clara GonçalvesAspiazú, Ignacio2022-07-22info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://seer.sct.embrapa.br/index.php/pab/article/view/27089Pesquisa Agropecuaria Brasileira; V.57, Jan./Dec., 2022: Publicação contínua em volume anual; e02722Pesquisa Agropecuária Brasileira; V.57, Jan./Dec., 2022: Publicação contínua em volume anual; e027221678-39210100-104xreponame:Pesquisa Agropecuária Brasileira (Online)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPAenghttps://seer.sct.embrapa.br/index.php/pab/article/view/27089/15030Direitos autorais 2022 Pesquisa Agropecuária Brasileirainfo:eu-repo/semantics/openAccess2023-01-23T13:40:20Zoai:ojs.seer.sct.embrapa.br:article/27089Revistahttp://seer.sct.embrapa.br/index.php/pabPRIhttps://old.scielo.br/oai/scielo-oai.phppab@sct.embrapa.br || sct.pab@embrapa.br1678-39210100-204Xopendoar:2023-01-23T13:40:20Pesquisa Agropecuária Brasileira (Online) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
Kohonen’s self-organizing maps for the study of genetic dissimilarity among soybean cultivars and genotypes Mapas auto-organizáveis de Kohonen no estudo da dissimilaridade genética entre cultivares e genótipos de soja |
title |
Kohonen’s self-organizing maps for the study of genetic dissimilarity among soybean cultivars and genotypes |
spellingShingle |
Kohonen’s self-organizing maps for the study of genetic dissimilarity among soybean cultivars and genotypes Sá, Ludimila Geiciane de Glycine max; artificial neural networks; multivariate analysis; plant breeding Glycine max; redes neurais artificiais; análise multivariada; melhoramento genético vegetal |
title_short |
Kohonen’s self-organizing maps for the study of genetic dissimilarity among soybean cultivars and genotypes |
title_full |
Kohonen’s self-organizing maps for the study of genetic dissimilarity among soybean cultivars and genotypes |
title_fullStr |
Kohonen’s self-organizing maps for the study of genetic dissimilarity among soybean cultivars and genotypes |
title_full_unstemmed |
Kohonen’s self-organizing maps for the study of genetic dissimilarity among soybean cultivars and genotypes |
title_sort |
Kohonen’s self-organizing maps for the study of genetic dissimilarity among soybean cultivars and genotypes |
author |
Sá, Ludimila Geiciane de |
author_facet |
Sá, Ludimila Geiciane de Azevedo, Alcinei Mistico Albuquerque, Carlos Juliano Brant Valadares, Nermy Ribeiro Brito, Orlando Gonçalves Fernandes, Ana Clara Gonçalves Aspiazú, Ignacio |
author_role |
author |
author2 |
Azevedo, Alcinei Mistico Albuquerque, Carlos Juliano Brant Valadares, Nermy Ribeiro Brito, Orlando Gonçalves Fernandes, Ana Clara Gonçalves Aspiazú, Ignacio |
author2_role |
author author author author author author |
dc.contributor.none.fl_str_mv |
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior Fundação de Amparo à Pesquisa do Estado de Minas Gerais Conselho Nacional de Desenvolvimento Científico e Tecnológico Coordenação de Aperfeiçoamento de Pessoal de Nível Superior Fundação de Amparo à Pesquisa do Estado de Minas Gerais Conselho Nacional de Desenvolvimento Científico e Tecnológico |
dc.contributor.author.fl_str_mv |
Sá, Ludimila Geiciane de Azevedo, Alcinei Mistico Albuquerque, Carlos Juliano Brant Valadares, Nermy Ribeiro Brito, Orlando Gonçalves Fernandes, Ana Clara Gonçalves Aspiazú, Ignacio |
dc.subject.por.fl_str_mv |
Glycine max; artificial neural networks; multivariate analysis; plant breeding Glycine max; redes neurais artificiais; análise multivariada; melhoramento genético vegetal |
topic |
Glycine max; artificial neural networks; multivariate analysis; plant breeding Glycine max; redes neurais artificiais; análise multivariada; melhoramento genético vegetal |
description |
The objective of this work was to evaluate the genetic dissimilarity between soybean cultivars and genotypes for the selection of parents, as well as to propose a new method for using Kohonen’s self-organizing maps (SOMs) and to test its efficiency through Anderson’s discriminant analysis. The morphoagronomic descriptors of soybean cultivars and genotypes were evaluated. For data analysis, SOM-type artificial neural networks were used. The proposed method allowed the determination of the best network architecture in a nonsubjective way. Furthermore, at the beginning of training, it was possible to mitigate the randomness effect of the synaptic weights on the formed clusters. Six dissimilar clusters were formed; therefore, there is genetic dissimilarity between soybean cultivars and genotypes. Cultivars C25, C8, and C13 can be combined with C36, C31, C32, and C33 because they show good yield-related attributes and high dissimilarity. The proposed methodology is advantageous in comparison with the use of traditional SOMs, besides being efficient due to clustering consistency according to Anderson’s discriminant analysis. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-07-22 |
dc.type.none.fl_str_mv |
|
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://seer.sct.embrapa.br/index.php/pab/article/view/27089 |
url |
https://seer.sct.embrapa.br/index.php/pab/article/view/27089 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://seer.sct.embrapa.br/index.php/pab/article/view/27089/15030 |
dc.rights.driver.fl_str_mv |
Direitos autorais 2022 Pesquisa Agropecuária Brasileira info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Direitos autorais 2022 Pesquisa Agropecuária Brasileira |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Pesquisa Agropecuaria Brasileira Pesquisa Agropecuária Brasileira |
publisher.none.fl_str_mv |
Pesquisa Agropecuaria Brasileira Pesquisa Agropecuária Brasileira |
dc.source.none.fl_str_mv |
Pesquisa Agropecuaria Brasileira; V.57, Jan./Dec., 2022: Publicação contínua em volume anual; e02722 Pesquisa Agropecuária Brasileira; V.57, Jan./Dec., 2022: Publicação contínua em volume anual; e02722 1678-3921 0100-104x reponame:Pesquisa Agropecuária Brasileira (Online) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Pesquisa Agropecuária Brasileira (Online) |
collection |
Pesquisa Agropecuária Brasileira (Online) |
repository.name.fl_str_mv |
Pesquisa Agropecuária Brasileira (Online) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
pab@sct.embrapa.br || sct.pab@embrapa.br |
_version_ |
1793416691698368512 |