Application of cluster analysis of temporal gene expression data to panel data
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Pesquisa Agropecuária Brasileira (Online) |
Texto Completo: | https://seer.sct.embrapa.br/index.php/pab/article/view/10592 |
Resumo: | The objective of this work was to determine the best alternative for the formation of homogeneous groups of gene expression series among the hierarchical clustering (Ward) and optimization (Tocher) methods, and to perform predictions regarding the gene expression of these series from a small number of temporal observations. The data used refer to the expression of genes that act on cell cycle of Saccharomyces cerevisiae, and corresponded to 114 gene expression series, with ten-fold-change values (expression measure) each, over time (0, 15, 30, 45, 60, 75, 90, 105, 120, and 135 min). The parameter estimates of autoregressive models AR(p) were previously adjusted to individual series (from each gene) of microarray time series data and used as variables in the clustering process. Gene expression predictions were made within each formed group from the adjustments in AR(p) model for panel data. The Ward’s method was the more suited for the formation of gene groups with homogeneous series. Once these groups are obtained, it is possible to adjust the model AR(2) for panel-data, and successfully predict gene expression at a future time (135 min) from a small number of temporal observations (the nine other fold-change values). |
id |
EMBRAPA-4_d8428eb5bbf3fbd04cf914a50ac4529b |
---|---|
oai_identifier_str |
oai:ojs.seer.sct.embrapa.br:article/10592 |
network_acronym_str |
EMBRAPA-4 |
network_name_str |
Pesquisa Agropecuária Brasileira (Online) |
repository_id_str |
|
spelling |
Application of cluster analysis of temporal gene expression data to panel dataAplicação da análise de agrupamento de dados de expressão gênica temporal a dados em painelbioinformatics; Tocher’s method; Ward’s method; microarray; autoregressive model; time seriesbioinformática; método de Tocher; método de Ward; microarranjo; modelo autorregressivo; série temporalThe objective of this work was to determine the best alternative for the formation of homogeneous groups of gene expression series among the hierarchical clustering (Ward) and optimization (Tocher) methods, and to perform predictions regarding the gene expression of these series from a small number of temporal observations. The data used refer to the expression of genes that act on cell cycle of Saccharomyces cerevisiae, and corresponded to 114 gene expression series, with ten-fold-change values (expression measure) each, over time (0, 15, 30, 45, 60, 75, 90, 105, 120, and 135 min). The parameter estimates of autoregressive models AR(p) were previously adjusted to individual series (from each gene) of microarray time series data and used as variables in the clustering process. Gene expression predictions were made within each formed group from the adjustments in AR(p) model for panel data. The Ward’s method was the more suited for the formation of gene groups with homogeneous series. Once these groups are obtained, it is possible to adjust the model AR(2) for panel-data, and successfully predict gene expression at a future time (135 min) from a small number of temporal observations (the nine other fold-change values). O objetivo deste trabalho foi determinar a melhor alternativa, entre os métodos de agrupamento hierárquico (Ward) e de otimização (Tocher), para a formação de grupos homogêneos de séries de expressão gênica, e realizar previsões quanto à expressão gênica dessas séries, a partir de pequeno número de observações temporais. Os dados utilizados referem-se à expressão de genes que atuam sobre o ciclo celular de Saccharomyces cerevisiae e corresponderam a 114 séries de expressão gênica, cada uma com dez valores de “fold-change” (medida da expressão gênica) ao longo do tempo (0, 15, 30, 45, 60, 75, 90, 105, 120 e 135 min). As estimativas dos parâmetros dos modelos autorregressivos AR(p) foram previamente ajustadas a séries individuais (de cada gene) de dados “microarray time series” e utilizadas, como variáveis, no processo de agrupamento. As previsões da expressão gênica foram feitas dentro de cada grupo formado, a partir dos ajustes no modelo AR(p) para dados em painel. O método de Ward foi o mais apropriado para a formação de grupos de genes com séries homogêneas. Uma vez obtidos esses grupos, é possível ajustar o modelo AR(2) para dados em painel e predizer a expressão gênica em um tempo futuro (135 min), a partir de um pequeno número de observações temporais (os outros nove valores de “fold-change”).Pesquisa Agropecuaria BrasileiraPesquisa Agropecuária BrasileiraNascimento, MoysésSáfadi, ThelmaSilva, Fabyano Fonseca e2012-02-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://seer.sct.embrapa.br/index.php/pab/article/view/10592Pesquisa Agropecuaria Brasileira; v.46, n.11, nov. 2011; 1489-1495Pesquisa Agropecuária Brasileira; v.46, n.11, nov. 2011; 1489-14951678-39210100-104xreponame:Pesquisa Agropecuária Brasileira (Online)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPAporhttps://seer.sct.embrapa.br/index.php/pab/article/view/10592/6697https://seer.sct.embrapa.br/index.php/pab/article/downloadSuppFile/10592/5985https://seer.sct.embrapa.br/index.php/pab/article/downloadSuppFile/10592/5986https://seer.sct.embrapa.br/index.php/pab/article/downloadSuppFile/10592/5987info:eu-repo/semantics/openAccess2014-05-09T18:31:50Zoai:ojs.seer.sct.embrapa.br:article/10592Revistahttp://seer.sct.embrapa.br/index.php/pabPRIhttps://old.scielo.br/oai/scielo-oai.phppab@sct.embrapa.br || sct.pab@embrapa.br1678-39210100-204Xopendoar:2014-05-09T18:31:50Pesquisa Agropecuária Brasileira (Online) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
Application of cluster analysis of temporal gene expression data to panel data Aplicação da análise de agrupamento de dados de expressão gênica temporal a dados em painel |
title |
Application of cluster analysis of temporal gene expression data to panel data |
spellingShingle |
Application of cluster analysis of temporal gene expression data to panel data Nascimento, Moysés bioinformatics; Tocher’s method; Ward’s method; microarray; autoregressive model; time series bioinformática; método de Tocher; método de Ward; microarranjo; modelo autorregressivo; série temporal |
title_short |
Application of cluster analysis of temporal gene expression data to panel data |
title_full |
Application of cluster analysis of temporal gene expression data to panel data |
title_fullStr |
Application of cluster analysis of temporal gene expression data to panel data |
title_full_unstemmed |
Application of cluster analysis of temporal gene expression data to panel data |
title_sort |
Application of cluster analysis of temporal gene expression data to panel data |
author |
Nascimento, Moysés |
author_facet |
Nascimento, Moysés Sáfadi, Thelma Silva, Fabyano Fonseca e |
author_role |
author |
author2 |
Sáfadi, Thelma Silva, Fabyano Fonseca e |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
|
dc.contributor.author.fl_str_mv |
Nascimento, Moysés Sáfadi, Thelma Silva, Fabyano Fonseca e |
dc.subject.por.fl_str_mv |
bioinformatics; Tocher’s method; Ward’s method; microarray; autoregressive model; time series bioinformática; método de Tocher; método de Ward; microarranjo; modelo autorregressivo; série temporal |
topic |
bioinformatics; Tocher’s method; Ward’s method; microarray; autoregressive model; time series bioinformática; método de Tocher; método de Ward; microarranjo; modelo autorregressivo; série temporal |
description |
The objective of this work was to determine the best alternative for the formation of homogeneous groups of gene expression series among the hierarchical clustering (Ward) and optimization (Tocher) methods, and to perform predictions regarding the gene expression of these series from a small number of temporal observations. The data used refer to the expression of genes that act on cell cycle of Saccharomyces cerevisiae, and corresponded to 114 gene expression series, with ten-fold-change values (expression measure) each, over time (0, 15, 30, 45, 60, 75, 90, 105, 120, and 135 min). The parameter estimates of autoregressive models AR(p) were previously adjusted to individual series (from each gene) of microarray time series data and used as variables in the clustering process. Gene expression predictions were made within each formed group from the adjustments in AR(p) model for panel data. The Ward’s method was the more suited for the formation of gene groups with homogeneous series. Once these groups are obtained, it is possible to adjust the model AR(2) for panel-data, and successfully predict gene expression at a future time (135 min) from a small number of temporal observations (the nine other fold-change values). |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-02-09 |
dc.type.none.fl_str_mv |
|
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://seer.sct.embrapa.br/index.php/pab/article/view/10592 |
url |
https://seer.sct.embrapa.br/index.php/pab/article/view/10592 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://seer.sct.embrapa.br/index.php/pab/article/view/10592/6697 https://seer.sct.embrapa.br/index.php/pab/article/downloadSuppFile/10592/5985 https://seer.sct.embrapa.br/index.php/pab/article/downloadSuppFile/10592/5986 https://seer.sct.embrapa.br/index.php/pab/article/downloadSuppFile/10592/5987 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Pesquisa Agropecuaria Brasileira Pesquisa Agropecuária Brasileira |
publisher.none.fl_str_mv |
Pesquisa Agropecuaria Brasileira Pesquisa Agropecuária Brasileira |
dc.source.none.fl_str_mv |
Pesquisa Agropecuaria Brasileira; v.46, n.11, nov. 2011; 1489-1495 Pesquisa Agropecuária Brasileira; v.46, n.11, nov. 2011; 1489-1495 1678-3921 0100-104x reponame:Pesquisa Agropecuária Brasileira (Online) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Pesquisa Agropecuária Brasileira (Online) |
collection |
Pesquisa Agropecuária Brasileira (Online) |
repository.name.fl_str_mv |
Pesquisa Agropecuária Brasileira (Online) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
pab@sct.embrapa.br || sct.pab@embrapa.br |
_version_ |
1793416657550442496 |