Bayesian approach for the evaluation of adaptability and stability of alfalfa genotypes
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Pesquisa Agropecuária Brasileira (Online) |
Texto Completo: | https://seer.sct.embrapa.br/index.php/pab/article/view/8320 |
Resumo: | The objective of this work was to propose a Bayesian approach for the Eberhart & Russell method to evaluate the phenotypic adaptability and stability of alfafa (Medicago sativa) genotypes, as well as to evaluate the efficiency of the use of prior informative and noninformative distributions. Data from a randomized block design experiment evaluating the forage dry weight of 92 genotypes were used. The Bayesian methodology proposed was implemented in the free software R by the MCMCregress function of the MCMCpack package. To represent the noninformative prior distributions, a probability distribution with high variance was used; and, to represent the informative prior, a meta‑analysis concept was adopted, characterized by the use of information provided by previous studies. The comparison between the prior distributions was done using the Bayes Factor, with the BayesFactor function of the MCMCpack package, which indicated that an informative prior is more appropriate under the conditions of this study. |
id |
EMBRAPA-4_ed7dbcef46199d3bf78a003de731a897 |
---|---|
oai_identifier_str |
oai:ojs.seer.sct.embrapa.br:article/8320 |
network_acronym_str |
EMBRAPA-4 |
network_name_str |
Pesquisa Agropecuária Brasileira (Online) |
repository_id_str |
|
spelling |
Bayesian approach for the evaluation of adaptability and stability of alfalfa genotypesAbordagem bayesiana para avaliação da adaptabilidade e estabilidade de genótipos de alfafaMedicago sativa; Bayes factor; informative prior; genotype x environment interaction; MCMCMedicago sativa; fator de Bayes; priori informativa; interação genótipo x ambiente; MCMCThe objective of this work was to propose a Bayesian approach for the Eberhart & Russell method to evaluate the phenotypic adaptability and stability of alfafa (Medicago sativa) genotypes, as well as to evaluate the efficiency of the use of prior informative and noninformative distributions. Data from a randomized block design experiment evaluating the forage dry weight of 92 genotypes were used. The Bayesian methodology proposed was implemented in the free software R by the MCMCregress function of the MCMCpack package. To represent the noninformative prior distributions, a probability distribution with high variance was used; and, to represent the informative prior, a meta‑analysis concept was adopted, characterized by the use of information provided by previous studies. The comparison between the prior distributions was done using the Bayes Factor, with the BayesFactor function of the MCMCpack package, which indicated that an informative prior is more appropriate under the conditions of this study. O objetivo deste trabalho foi propor uma abordagem bayesiana do método de Eberhart & Russell para avaliar a adaptabilidade e da estabilidade fenotípica de genótipos de alfafa (Medicago sativa), bem como avaliar a eficiência da utilização de distribuições a priori informativas e pouco informativas. Foram utilizados dados de um experimento em blocos ao acaso, no qual se avaliou a produção de massa de matéria seca de 92 genótipos. A metodologia bayesiana proposta foi implementada no programa livre R por meio da função MCMCregress do pacote MCMCpack. Para representar as distribuições a priori pouco informativas, utilizaram‑se distribuições de probabilidade com grande variância; e, para representar distribuições a priori informativas, adotou‑se o conceito de meta‑análise, que se caracteriza pela utilização de informações provenientes de trabalhos anteriores. A comparação entre as distribuições a priori foi realizada por meio do fator de Bayes, com a função BayesFactor do pacote MCMCpack, que indicou a priori informativa como a mais adequada nas condições deste estudo.Pesquisa Agropecuaria BrasileiraPesquisa Agropecuária BrasileiraNascimento, MoysésSilva, Fabyano FonsecaSáfadi, ThelmaNascimento, Ana Carolina Mota CampanaFerreira, Reinaldo de PaulaCruz, Cosme Damião2011-03-23info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://seer.sct.embrapa.br/index.php/pab/article/view/8320Pesquisa Agropecuaria Brasileira; v.46, n.1, jan. 2011; 26-32Pesquisa Agropecuária Brasileira; v.46, n.1, jan. 2011; 26-321678-39210100-104xreponame:Pesquisa Agropecuária Brasileira (Online)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPAporhttps://seer.sct.embrapa.br/index.php/pab/article/view/8320/6179https://seer.sct.embrapa.br/index.php/pab/article/downloadSuppFile/8320/3985info:eu-repo/semantics/openAccess2014-05-14T17:52:09Zoai:ojs.seer.sct.embrapa.br:article/8320Revistahttp://seer.sct.embrapa.br/index.php/pabPRIhttps://old.scielo.br/oai/scielo-oai.phppab@sct.embrapa.br || sct.pab@embrapa.br1678-39210100-204Xopendoar:2014-05-14T17:52:09Pesquisa Agropecuária Brasileira (Online) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
Bayesian approach for the evaluation of adaptability and stability of alfalfa genotypes Abordagem bayesiana para avaliação da adaptabilidade e estabilidade de genótipos de alfafa |
title |
Bayesian approach for the evaluation of adaptability and stability of alfalfa genotypes |
spellingShingle |
Bayesian approach for the evaluation of adaptability and stability of alfalfa genotypes Nascimento, Moysés Medicago sativa; Bayes factor; informative prior; genotype x environment interaction; MCMC Medicago sativa; fator de Bayes; priori informativa; interação genótipo x ambiente; MCMC |
title_short |
Bayesian approach for the evaluation of adaptability and stability of alfalfa genotypes |
title_full |
Bayesian approach for the evaluation of adaptability and stability of alfalfa genotypes |
title_fullStr |
Bayesian approach for the evaluation of adaptability and stability of alfalfa genotypes |
title_full_unstemmed |
Bayesian approach for the evaluation of adaptability and stability of alfalfa genotypes |
title_sort |
Bayesian approach for the evaluation of adaptability and stability of alfalfa genotypes |
author |
Nascimento, Moysés |
author_facet |
Nascimento, Moysés Silva, Fabyano Fonseca Sáfadi, Thelma Nascimento, Ana Carolina Mota Campana Ferreira, Reinaldo de Paula Cruz, Cosme Damião |
author_role |
author |
author2 |
Silva, Fabyano Fonseca Sáfadi, Thelma Nascimento, Ana Carolina Mota Campana Ferreira, Reinaldo de Paula Cruz, Cosme Damião |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
|
dc.contributor.author.fl_str_mv |
Nascimento, Moysés Silva, Fabyano Fonseca Sáfadi, Thelma Nascimento, Ana Carolina Mota Campana Ferreira, Reinaldo de Paula Cruz, Cosme Damião |
dc.subject.por.fl_str_mv |
Medicago sativa; Bayes factor; informative prior; genotype x environment interaction; MCMC Medicago sativa; fator de Bayes; priori informativa; interação genótipo x ambiente; MCMC |
topic |
Medicago sativa; Bayes factor; informative prior; genotype x environment interaction; MCMC Medicago sativa; fator de Bayes; priori informativa; interação genótipo x ambiente; MCMC |
description |
The objective of this work was to propose a Bayesian approach for the Eberhart & Russell method to evaluate the phenotypic adaptability and stability of alfafa (Medicago sativa) genotypes, as well as to evaluate the efficiency of the use of prior informative and noninformative distributions. Data from a randomized block design experiment evaluating the forage dry weight of 92 genotypes were used. The Bayesian methodology proposed was implemented in the free software R by the MCMCregress function of the MCMCpack package. To represent the noninformative prior distributions, a probability distribution with high variance was used; and, to represent the informative prior, a meta‑analysis concept was adopted, characterized by the use of information provided by previous studies. The comparison between the prior distributions was done using the Bayes Factor, with the BayesFactor function of the MCMCpack package, which indicated that an informative prior is more appropriate under the conditions of this study. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-03-23 |
dc.type.none.fl_str_mv |
|
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://seer.sct.embrapa.br/index.php/pab/article/view/8320 |
url |
https://seer.sct.embrapa.br/index.php/pab/article/view/8320 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://seer.sct.embrapa.br/index.php/pab/article/view/8320/6179 https://seer.sct.embrapa.br/index.php/pab/article/downloadSuppFile/8320/3985 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Pesquisa Agropecuaria Brasileira Pesquisa Agropecuária Brasileira |
publisher.none.fl_str_mv |
Pesquisa Agropecuaria Brasileira Pesquisa Agropecuária Brasileira |
dc.source.none.fl_str_mv |
Pesquisa Agropecuaria Brasileira; v.46, n.1, jan. 2011; 26-32 Pesquisa Agropecuária Brasileira; v.46, n.1, jan. 2011; 26-32 1678-3921 0100-104x reponame:Pesquisa Agropecuária Brasileira (Online) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Pesquisa Agropecuária Brasileira (Online) |
collection |
Pesquisa Agropecuária Brasileira (Online) |
repository.name.fl_str_mv |
Pesquisa Agropecuária Brasileira (Online) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
pab@sct.embrapa.br || sct.pab@embrapa.br |
_version_ |
1793416687631990784 |