Bayesian approach for the evaluation of adaptability and stability of alfalfa genotypes

Detalhes bibliográficos
Autor(a) principal: Nascimento, Moysés
Data de Publicação: 2011
Outros Autores: Silva, Fabyano Fonseca, Sáfadi, Thelma, Nascimento, Ana Carolina Mota Campana, Ferreira, Reinaldo de Paula, Cruz, Cosme Damião
Tipo de documento: Artigo
Idioma: por
Título da fonte: Pesquisa Agropecuária Brasileira (Online)
Texto Completo: https://seer.sct.embrapa.br/index.php/pab/article/view/8320
Resumo: The objective of this work was to propose a Bayesian approach for the Eberhart & Russell method to evaluate the phenotypic adaptability and stability of alfafa (Medicago sativa) genotypes, as well as to evaluate the efficiency of the use of prior informative and noninformative distributions. Data from a randomized block design experiment evaluating the forage dry weight of 92 genotypes were used. The Bayesian methodology proposed was implemented in the free software R by the MCMCregress function of the MCMCpack package. To represent the noninformative prior distributions, a probability distribution with high variance was used; and, to represent the informative prior, a meta‑analysis concept was adopted, characterized by the use of information provided by previous studies. The comparison between the prior distributions was done using the Bayes Factor, with the BayesFactor function of the MCMCpack package, which indicated that an informative prior is more appropriate under the conditions of this study.
id EMBRAPA-4_ed7dbcef46199d3bf78a003de731a897
oai_identifier_str oai:ojs.seer.sct.embrapa.br:article/8320
network_acronym_str EMBRAPA-4
network_name_str Pesquisa Agropecuária Brasileira (Online)
repository_id_str
spelling Bayesian approach for the evaluation of adaptability and stability of alfalfa genotypesAbordagem bayesiana para avaliação da adaptabilidade e estabilidade de genótipos de alfafaMedicago sativa; Bayes factor; informative prior; genotype x environment interaction; MCMCMedicago sativa; fator de Bayes; priori informativa; interação genótipo x ambiente; MCMCThe objective of this work was to propose a Bayesian approach for the Eberhart & Russell method to evaluate the phenotypic adaptability and stability of alfafa (Medicago sativa) genotypes, as well as to evaluate the efficiency of the use of prior informative and noninformative distributions. Data from a randomized block design experiment evaluating the forage dry weight of 92 genotypes were used. The Bayesian methodology proposed was implemented in the free software R by the MCMCregress function of the MCMCpack package. To represent the noninformative prior distributions, a probability distribution with high variance was used; and, to represent the informative prior, a meta‑analysis concept was adopted, characterized by the use of information provided by previous studies. The comparison between the prior distributions was done using the Bayes Factor, with the BayesFactor function of the MCMCpack package, which indicated that an informative prior is more appropriate under the conditions of this study. O objetivo deste trabalho foi propor uma abordagem bayesiana do método de Eberhart & Russell para avaliar a adaptabilidade e da estabilidade fenotípica de genótipos de alfafa (Medicago sativa), bem como avaliar a eficiência da utilização de distribuições a priori informativas e pouco informativas. Foram utilizados dados de um experimento em blocos ao acaso, no qual se avaliou a produção de massa de matéria seca de 92 genótipos. A metodologia bayesiana proposta foi implementada no programa livre R por meio da função MCMCregress do pacote MCMCpack. Para representar as distribuições a priori pouco informativas, utilizaram‑se distribuições de probabilidade com grande variância; e, para representar distribuições a priori informativas, adotou‑se o conceito de meta‑análise, que se caracteriza pela utilização de informações provenientes de trabalhos anteriores. A comparação entre as distribuições a priori foi realizada por meio do fator de Bayes, com a função BayesFactor do pacote MCMCpack, que indicou a priori informativa como a mais adequada nas condições deste estudo.Pesquisa Agropecuaria BrasileiraPesquisa Agropecuária BrasileiraNascimento, MoysésSilva, Fabyano FonsecaSáfadi, ThelmaNascimento, Ana Carolina Mota CampanaFerreira, Reinaldo de PaulaCruz, Cosme Damião2011-03-23info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://seer.sct.embrapa.br/index.php/pab/article/view/8320Pesquisa Agropecuaria Brasileira; v.46, n.1, jan. 2011; 26-32Pesquisa Agropecuária Brasileira; v.46, n.1, jan. 2011; 26-321678-39210100-104xreponame:Pesquisa Agropecuária Brasileira (Online)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPAporhttps://seer.sct.embrapa.br/index.php/pab/article/view/8320/6179https://seer.sct.embrapa.br/index.php/pab/article/downloadSuppFile/8320/3985info:eu-repo/semantics/openAccess2014-05-14T17:52:09Zoai:ojs.seer.sct.embrapa.br:article/8320Revistahttp://seer.sct.embrapa.br/index.php/pabPRIhttps://old.scielo.br/oai/scielo-oai.phppab@sct.embrapa.br || sct.pab@embrapa.br1678-39210100-204Xopendoar:2014-05-14T17:52:09Pesquisa Agropecuária Brasileira (Online) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Bayesian approach for the evaluation of adaptability and stability of alfalfa genotypes
Abordagem bayesiana para avaliação da adaptabilidade e estabilidade de genótipos de alfafa
title Bayesian approach for the evaluation of adaptability and stability of alfalfa genotypes
spellingShingle Bayesian approach for the evaluation of adaptability and stability of alfalfa genotypes
Nascimento, Moysés
Medicago sativa; Bayes factor; informative prior; genotype x environment interaction; MCMC
Medicago sativa; fator de Bayes; priori informativa; interação genótipo x ambiente; MCMC
title_short Bayesian approach for the evaluation of adaptability and stability of alfalfa genotypes
title_full Bayesian approach for the evaluation of adaptability and stability of alfalfa genotypes
title_fullStr Bayesian approach for the evaluation of adaptability and stability of alfalfa genotypes
title_full_unstemmed Bayesian approach for the evaluation of adaptability and stability of alfalfa genotypes
title_sort Bayesian approach for the evaluation of adaptability and stability of alfalfa genotypes
author Nascimento, Moysés
author_facet Nascimento, Moysés
Silva, Fabyano Fonseca
Sáfadi, Thelma
Nascimento, Ana Carolina Mota Campana
Ferreira, Reinaldo de Paula
Cruz, Cosme Damião
author_role author
author2 Silva, Fabyano Fonseca
Sáfadi, Thelma
Nascimento, Ana Carolina Mota Campana
Ferreira, Reinaldo de Paula
Cruz, Cosme Damião
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv

dc.contributor.author.fl_str_mv Nascimento, Moysés
Silva, Fabyano Fonseca
Sáfadi, Thelma
Nascimento, Ana Carolina Mota Campana
Ferreira, Reinaldo de Paula
Cruz, Cosme Damião
dc.subject.por.fl_str_mv Medicago sativa; Bayes factor; informative prior; genotype x environment interaction; MCMC
Medicago sativa; fator de Bayes; priori informativa; interação genótipo x ambiente; MCMC
topic Medicago sativa; Bayes factor; informative prior; genotype x environment interaction; MCMC
Medicago sativa; fator de Bayes; priori informativa; interação genótipo x ambiente; MCMC
description The objective of this work was to propose a Bayesian approach for the Eberhart & Russell method to evaluate the phenotypic adaptability and stability of alfafa (Medicago sativa) genotypes, as well as to evaluate the efficiency of the use of prior informative and noninformative distributions. Data from a randomized block design experiment evaluating the forage dry weight of 92 genotypes were used. The Bayesian methodology proposed was implemented in the free software R by the MCMCregress function of the MCMCpack package. To represent the noninformative prior distributions, a probability distribution with high variance was used; and, to represent the informative prior, a meta‑analysis concept was adopted, characterized by the use of information provided by previous studies. The comparison between the prior distributions was done using the Bayes Factor, with the BayesFactor function of the MCMCpack package, which indicated that an informative prior is more appropriate under the conditions of this study.
publishDate 2011
dc.date.none.fl_str_mv 2011-03-23
dc.type.none.fl_str_mv
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://seer.sct.embrapa.br/index.php/pab/article/view/8320
url https://seer.sct.embrapa.br/index.php/pab/article/view/8320
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://seer.sct.embrapa.br/index.php/pab/article/view/8320/6179
https://seer.sct.embrapa.br/index.php/pab/article/downloadSuppFile/8320/3985
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Pesquisa Agropecuaria Brasileira
Pesquisa Agropecuária Brasileira
publisher.none.fl_str_mv Pesquisa Agropecuaria Brasileira
Pesquisa Agropecuária Brasileira
dc.source.none.fl_str_mv Pesquisa Agropecuaria Brasileira; v.46, n.1, jan. 2011; 26-32
Pesquisa Agropecuária Brasileira; v.46, n.1, jan. 2011; 26-32
1678-3921
0100-104x
reponame:Pesquisa Agropecuária Brasileira (Online)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Pesquisa Agropecuária Brasileira (Online)
collection Pesquisa Agropecuária Brasileira (Online)
repository.name.fl_str_mv Pesquisa Agropecuária Brasileira (Online) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv pab@sct.embrapa.br || sct.pab@embrapa.br
_version_ 1793416687631990784