Empirical models to estimate the accumulation of dry matter in Marandu palisade grass using agrometeorological variables
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Pesquisa Agropecuária Brasileira (Online) |
Texto Completo: | https://seer.sct.embrapa.br/index.php/pab/article/view/9684 |
Resumo: | The objective of this work was to test empirical linear regression models, to predict dry matter accumulation rates (DMAR) of Urochloa brizantha cv. Marandu, using agrometeorological variables. To generate the models, the average dry matter accumulation under rainfed conditions, between 1998 and 2002, was used. The evaluated variables were: minimum, maximum and average temperatures, global radiation (GR), degree-days, actual (AET) and potential evapotranspiration (PET) obtained from the water balance, photothermal units (PU) and the climatic growth index (CGI). Except for the PU, the univariate and multivariate regressions showed good predictive ability. The best results were for the multivariate regression, with Tmín, GR and AET: R2, 0.84; root mean square residual (RMSR), 14.72; and Akaike’s information criterium (AIC), 222.5. In the univariate regression, the following variables stood out: corrected degree-days (R2, 0.75; RMSR, 17.84; CIA, 242.6), corrected minimum temperature (R2, 0.75; RMSR, 17.82; AIC, 244.1); and CGI (R2, 0.74; RMSR, 17.85; AIC, 236.9). The correction of the agrometeorological variables using the relation between real and potential evapotranspiration (AET/PET) enhances, in general, the model prediction of DMAR. |
id |
EMBRAPA-4_fd05502e60ce2a500c8f6301bdc78333 |
---|---|
oai_identifier_str |
oai:ojs.seer.sct.embrapa.br:article/9684 |
network_acronym_str |
EMBRAPA-4 |
network_name_str |
Pesquisa Agropecuária Brasileira (Online) |
repository_id_str |
|
spelling |
Empirical models to estimate the accumulation of dry matter in Marandu palisade grass using agrometeorological variablesModelos empíricos para estimar o acúmulo de matéria seca de capim‑marandu com variáveis agrometeorológicasBrachiaria brizantha; Urochloa brizantha cv. Marandu; linear regressions; multivariate regressionsBrachiaria brizantha; Urochloa brizantha; regressão linear; regressão multivariadaThe objective of this work was to test empirical linear regression models, to predict dry matter accumulation rates (DMAR) of Urochloa brizantha cv. Marandu, using agrometeorological variables. To generate the models, the average dry matter accumulation under rainfed conditions, between 1998 and 2002, was used. The evaluated variables were: minimum, maximum and average temperatures, global radiation (GR), degree-days, actual (AET) and potential evapotranspiration (PET) obtained from the water balance, photothermal units (PU) and the climatic growth index (CGI). Except for the PU, the univariate and multivariate regressions showed good predictive ability. The best results were for the multivariate regression, with Tmín, GR and AET: R2, 0.84; root mean square residual (RMSR), 14.72; and Akaike’s information criterium (AIC), 222.5. In the univariate regression, the following variables stood out: corrected degree-days (R2, 0.75; RMSR, 17.84; CIA, 242.6), corrected minimum temperature (R2, 0.75; RMSR, 17.82; AIC, 244.1); and CGI (R2, 0.74; RMSR, 17.85; AIC, 236.9). The correction of the agrometeorological variables using the relation between real and potential evapotranspiration (AET/PET) enhances, in general, the model prediction of DMAR. O objetivo deste estudo foi testar modelos empíricos de regressão linear, para a predição do acúmulo de matéria seca (TAMS) de Urochloa brizantha cv. Marandu, em função de variáveis agrometeorológicas. Para gerar os modelos, foi utilizada a taxa média de acúmulo de matéria seca, em condições de sequeiro, entre 1998 e 2002. As variáveis avaliadas foram: temperaturas mínima, máxima e média, radiação global (Rg), graus-dia, evapotranspiração real (ETR) e potencial (ETP) obtidas a partir do balanço hídrico, unidades fototérmicas (UF) e índice climático de crescimento (ICC). As regressões univariada e multivariada mostraram boa capacidade de predição, com exceção para as que utilizam a UF. Os melhores resultados foram para a regressão multivariada, com Tmín, Rg e ETR: R2, 0,84; raiz do quadrado médio do resíduo (RQMR), 14,72; e critério de informação de Akaike (CIA), 222,5. Na regressão linear univariada, destacaram-se as variáveis: graus-dia corrigido (R2, 0,75; RQMR,17,84; e CIA, 242,6), temperatura mínima corrigida (R2, 0,75; RQMR, 17,82; CIA, 244,1), e ICC (R2, 0,74; RQMR, 17,85; CIA, 236,9). A correção das variáveis agrometeorológicas pela relação entre evapotranspiração real e potencial (ETR/ETP), em geral, melhora a predição da TAMS pelos modelos. Pesquisa Agropecuaria BrasileiraPesquisa Agropecuária Brasileirada Cruz, Pedro GomesSantos, Patricia MenezesPezzopane, José Ricardo MacedoOliveira, Patrícia Perondi Anchãoda Araujo, Leandro Coelho2011-08-24info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://seer.sct.embrapa.br/index.php/pab/article/view/9684Pesquisa Agropecuaria Brasileira; v.46, n.7, jul. 2011; 675-681Pesquisa Agropecuária Brasileira; v.46, n.7, jul. 2011; 675-6811678-39210100-104xreponame:Pesquisa Agropecuária Brasileira (Online)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPAporhttps://seer.sct.embrapa.br/index.php/pab/article/view/9684/6421https://seer.sct.embrapa.br/index.php/pab/article/downloadSuppFile/9684/4930info:eu-repo/semantics/openAccess2014-06-02T19:38:58Zoai:ojs.seer.sct.embrapa.br:article/9684Revistahttp://seer.sct.embrapa.br/index.php/pabPRIhttps://old.scielo.br/oai/scielo-oai.phppab@sct.embrapa.br || sct.pab@embrapa.br1678-39210100-204Xopendoar:2014-06-02T19:38:58Pesquisa Agropecuária Brasileira (Online) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
Empirical models to estimate the accumulation of dry matter in Marandu palisade grass using agrometeorological variables Modelos empíricos para estimar o acúmulo de matéria seca de capim‑marandu com variáveis agrometeorológicas |
title |
Empirical models to estimate the accumulation of dry matter in Marandu palisade grass using agrometeorological variables |
spellingShingle |
Empirical models to estimate the accumulation of dry matter in Marandu palisade grass using agrometeorological variables da Cruz, Pedro Gomes Brachiaria brizantha; Urochloa brizantha cv. Marandu; linear regressions; multivariate regressions Brachiaria brizantha; Urochloa brizantha; regressão linear; regressão multivariada |
title_short |
Empirical models to estimate the accumulation of dry matter in Marandu palisade grass using agrometeorological variables |
title_full |
Empirical models to estimate the accumulation of dry matter in Marandu palisade grass using agrometeorological variables |
title_fullStr |
Empirical models to estimate the accumulation of dry matter in Marandu palisade grass using agrometeorological variables |
title_full_unstemmed |
Empirical models to estimate the accumulation of dry matter in Marandu palisade grass using agrometeorological variables |
title_sort |
Empirical models to estimate the accumulation of dry matter in Marandu palisade grass using agrometeorological variables |
author |
da Cruz, Pedro Gomes |
author_facet |
da Cruz, Pedro Gomes Santos, Patricia Menezes Pezzopane, José Ricardo Macedo Oliveira, Patrícia Perondi Anchão da Araujo, Leandro Coelho |
author_role |
author |
author2 |
Santos, Patricia Menezes Pezzopane, José Ricardo Macedo Oliveira, Patrícia Perondi Anchão da Araujo, Leandro Coelho |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
|
dc.contributor.author.fl_str_mv |
da Cruz, Pedro Gomes Santos, Patricia Menezes Pezzopane, José Ricardo Macedo Oliveira, Patrícia Perondi Anchão da Araujo, Leandro Coelho |
dc.subject.por.fl_str_mv |
Brachiaria brizantha; Urochloa brizantha cv. Marandu; linear regressions; multivariate regressions Brachiaria brizantha; Urochloa brizantha; regressão linear; regressão multivariada |
topic |
Brachiaria brizantha; Urochloa brizantha cv. Marandu; linear regressions; multivariate regressions Brachiaria brizantha; Urochloa brizantha; regressão linear; regressão multivariada |
description |
The objective of this work was to test empirical linear regression models, to predict dry matter accumulation rates (DMAR) of Urochloa brizantha cv. Marandu, using agrometeorological variables. To generate the models, the average dry matter accumulation under rainfed conditions, between 1998 and 2002, was used. The evaluated variables were: minimum, maximum and average temperatures, global radiation (GR), degree-days, actual (AET) and potential evapotranspiration (PET) obtained from the water balance, photothermal units (PU) and the climatic growth index (CGI). Except for the PU, the univariate and multivariate regressions showed good predictive ability. The best results were for the multivariate regression, with Tmín, GR and AET: R2, 0.84; root mean square residual (RMSR), 14.72; and Akaike’s information criterium (AIC), 222.5. In the univariate regression, the following variables stood out: corrected degree-days (R2, 0.75; RMSR, 17.84; CIA, 242.6), corrected minimum temperature (R2, 0.75; RMSR, 17.82; AIC, 244.1); and CGI (R2, 0.74; RMSR, 17.85; AIC, 236.9). The correction of the agrometeorological variables using the relation between real and potential evapotranspiration (AET/PET) enhances, in general, the model prediction of DMAR. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-08-24 |
dc.type.none.fl_str_mv |
|
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://seer.sct.embrapa.br/index.php/pab/article/view/9684 |
url |
https://seer.sct.embrapa.br/index.php/pab/article/view/9684 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://seer.sct.embrapa.br/index.php/pab/article/view/9684/6421 https://seer.sct.embrapa.br/index.php/pab/article/downloadSuppFile/9684/4930 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Pesquisa Agropecuaria Brasileira Pesquisa Agropecuária Brasileira |
publisher.none.fl_str_mv |
Pesquisa Agropecuaria Brasileira Pesquisa Agropecuária Brasileira |
dc.source.none.fl_str_mv |
Pesquisa Agropecuaria Brasileira; v.46, n.7, jul. 2011; 675-681 Pesquisa Agropecuária Brasileira; v.46, n.7, jul. 2011; 675-681 1678-3921 0100-104x reponame:Pesquisa Agropecuária Brasileira (Online) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Pesquisa Agropecuária Brasileira (Online) |
collection |
Pesquisa Agropecuária Brasileira (Online) |
repository.name.fl_str_mv |
Pesquisa Agropecuária Brasileira (Online) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
pab@sct.embrapa.br || sct.pab@embrapa.br |
_version_ |
1793416652092604416 |