Empirical models to estimate the accumulation of dry matter in Marandu palisade grass using agrometeorological variables

Detalhes bibliográficos
Autor(a) principal: da Cruz, Pedro Gomes
Data de Publicação: 2011
Outros Autores: Santos, Patricia Menezes, Pezzopane, José Ricardo Macedo, Oliveira, Patrícia Perondi Anchão, da Araujo, Leandro Coelho
Tipo de documento: Artigo
Idioma: por
Título da fonte: Pesquisa Agropecuária Brasileira (Online)
Texto Completo: https://seer.sct.embrapa.br/index.php/pab/article/view/9684
Resumo: The objective of this work was to test empirical linear regression models, to predict dry matter accumulation rates (DMAR) of Urochloa brizantha cv. Marandu, using agrometeorological variables. To generate the models, the average dry matter accumulation under rainfed conditions, between 1998 and 2002, was used. The evaluated variables were: minimum, maximum and average temperatures, global radiation (GR), degree-days, actual (AET) and potential evapotranspiration (PET) obtained from the water balance, photothermal units (PU) and the climatic growth index (CGI). Except for the PU, the univariate and multivariate regressions showed good predictive ability. The best results were for the multivariate regression, with Tmín, GR and AET: R2, 0.84; root mean square residual (RMSR), 14.72; and Akaike’s information criterium (AIC), 222.5. In the univariate regression, the following variables stood out: corrected degree-days (R2, 0.75; RMSR, 17.84; CIA, 242.6), corrected minimum temperature (R2, 0.75; RMSR, 17.82; AIC, 244.1); and CGI (R2, 0.74; RMSR, 17.85; AIC, 236.9). The correction of the agrometeorological variables using the relation between real and potential evapotranspiration (AET/PET) enhances, in general, the model prediction of DMAR.
id EMBRAPA-4_fd05502e60ce2a500c8f6301bdc78333
oai_identifier_str oai:ojs.seer.sct.embrapa.br:article/9684
network_acronym_str EMBRAPA-4
network_name_str Pesquisa Agropecuária Brasileira (Online)
repository_id_str
spelling Empirical models to estimate the accumulation of dry matter in Marandu palisade grass using agrometeorological variablesModelos empíricos para estimar o acúmulo de matéria seca de capim‑marandu com variáveis agrometeorológicasBrachiaria brizantha; Urochloa brizantha cv. Marandu; linear regressions; multivariate regressionsBrachiaria brizantha; Urochloa brizantha; regressão linear; regressão multivariadaThe objective of this work was to test empirical linear regression models, to predict dry matter accumulation rates (DMAR) of Urochloa brizantha cv. Marandu, using agrometeorological variables. To generate the models, the average dry matter accumulation under rainfed conditions, between 1998 and 2002, was used. The evaluated variables were: minimum, maximum and average temperatures, global radiation (GR), degree-days, actual (AET) and potential evapotranspiration (PET) obtained from the water balance, photothermal units (PU) and the climatic growth index (CGI). Except for the PU, the univariate and multivariate regressions showed good predictive ability. The best results were for the multivariate regression, with Tmín, GR and AET: R2, 0.84; root mean square residual (RMSR), 14.72; and Akaike’s information criterium (AIC), 222.5. In the univariate regression, the following variables stood out: corrected degree-days (R2, 0.75; RMSR, 17.84; CIA, 242.6), corrected minimum temperature (R2, 0.75; RMSR, 17.82; AIC, 244.1); and CGI (R2, 0.74; RMSR, 17.85; AIC, 236.9). The correction of the agrometeorological variables using the relation between real and potential evapotranspiration (AET/PET) enhances, in general, the model prediction of DMAR. O objetivo deste estudo foi testar modelos empíricos de regressão linear, para a predição do acúmulo de matéria seca (TAMS) de Urochloa brizantha cv. Marandu, em função de variáveis agrometeorológicas. Para gerar os modelos, foi utilizada a taxa média de acúmulo de matéria seca, em condições de sequeiro, entre 1998 e 2002. As variáveis avaliadas foram: temperaturas mínima, máxima e média, radiação global (Rg), graus-dia, evapotranspiração real (ETR) e potencial (ETP) obtidas a partir do balanço hídrico, unidades fototérmicas (UF) e índice climático de crescimento (ICC). As regressões univariada e multivariada mostraram boa capacidade de predição, com exceção para as que utilizam a UF. Os melhores resultados foram para a regressão multivariada, com Tmín, Rg e ETR: R2, 0,84; raiz do quadrado médio do resíduo (RQMR), 14,72; e critério de informação de Akaike (CIA), 222,5. Na regressão linear univariada, destacaram-se as variáveis: graus-dia corrigido (R2, 0,75; RQMR,17,84; e CIA, 242,6), temperatura mínima corrigida (R2, 0,75; RQMR, 17,82; CIA, 244,1), e ICC (R2, 0,74; RQMR, 17,85; CIA, 236,9). A correção das variáveis agrometeorológicas pela relação entre evapotranspiração real e potencial (ETR/ETP), em geral, melhora a predição da TAMS pelos modelos. Pesquisa Agropecuaria BrasileiraPesquisa Agropecuária Brasileirada Cruz, Pedro GomesSantos, Patricia MenezesPezzopane, José Ricardo MacedoOliveira, Patrícia Perondi Anchãoda Araujo, Leandro Coelho2011-08-24info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://seer.sct.embrapa.br/index.php/pab/article/view/9684Pesquisa Agropecuaria Brasileira; v.46, n.7, jul. 2011; 675-681Pesquisa Agropecuária Brasileira; v.46, n.7, jul. 2011; 675-6811678-39210100-104xreponame:Pesquisa Agropecuária Brasileira (Online)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPAporhttps://seer.sct.embrapa.br/index.php/pab/article/view/9684/6421https://seer.sct.embrapa.br/index.php/pab/article/downloadSuppFile/9684/4930info:eu-repo/semantics/openAccess2014-06-02T19:38:58Zoai:ojs.seer.sct.embrapa.br:article/9684Revistahttp://seer.sct.embrapa.br/index.php/pabPRIhttps://old.scielo.br/oai/scielo-oai.phppab@sct.embrapa.br || sct.pab@embrapa.br1678-39210100-204Xopendoar:2014-06-02T19:38:58Pesquisa Agropecuária Brasileira (Online) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Empirical models to estimate the accumulation of dry matter in Marandu palisade grass using agrometeorological variables
Modelos empíricos para estimar o acúmulo de matéria seca de capim‑marandu com variáveis agrometeorológicas
title Empirical models to estimate the accumulation of dry matter in Marandu palisade grass using agrometeorological variables
spellingShingle Empirical models to estimate the accumulation of dry matter in Marandu palisade grass using agrometeorological variables
da Cruz, Pedro Gomes
Brachiaria brizantha; Urochloa brizantha cv. Marandu; linear regressions; multivariate regressions
Brachiaria brizantha; Urochloa brizantha; regressão linear; regressão multivariada
title_short Empirical models to estimate the accumulation of dry matter in Marandu palisade grass using agrometeorological variables
title_full Empirical models to estimate the accumulation of dry matter in Marandu palisade grass using agrometeorological variables
title_fullStr Empirical models to estimate the accumulation of dry matter in Marandu palisade grass using agrometeorological variables
title_full_unstemmed Empirical models to estimate the accumulation of dry matter in Marandu palisade grass using agrometeorological variables
title_sort Empirical models to estimate the accumulation of dry matter in Marandu palisade grass using agrometeorological variables
author da Cruz, Pedro Gomes
author_facet da Cruz, Pedro Gomes
Santos, Patricia Menezes
Pezzopane, José Ricardo Macedo
Oliveira, Patrícia Perondi Anchão
da Araujo, Leandro Coelho
author_role author
author2 Santos, Patricia Menezes
Pezzopane, José Ricardo Macedo
Oliveira, Patrícia Perondi Anchão
da Araujo, Leandro Coelho
author2_role author
author
author
author
dc.contributor.none.fl_str_mv

dc.contributor.author.fl_str_mv da Cruz, Pedro Gomes
Santos, Patricia Menezes
Pezzopane, José Ricardo Macedo
Oliveira, Patrícia Perondi Anchão
da Araujo, Leandro Coelho
dc.subject.por.fl_str_mv Brachiaria brizantha; Urochloa brizantha cv. Marandu; linear regressions; multivariate regressions
Brachiaria brizantha; Urochloa brizantha; regressão linear; regressão multivariada
topic Brachiaria brizantha; Urochloa brizantha cv. Marandu; linear regressions; multivariate regressions
Brachiaria brizantha; Urochloa brizantha; regressão linear; regressão multivariada
description The objective of this work was to test empirical linear regression models, to predict dry matter accumulation rates (DMAR) of Urochloa brizantha cv. Marandu, using agrometeorological variables. To generate the models, the average dry matter accumulation under rainfed conditions, between 1998 and 2002, was used. The evaluated variables were: minimum, maximum and average temperatures, global radiation (GR), degree-days, actual (AET) and potential evapotranspiration (PET) obtained from the water balance, photothermal units (PU) and the climatic growth index (CGI). Except for the PU, the univariate and multivariate regressions showed good predictive ability. The best results were for the multivariate regression, with Tmín, GR and AET: R2, 0.84; root mean square residual (RMSR), 14.72; and Akaike’s information criterium (AIC), 222.5. In the univariate regression, the following variables stood out: corrected degree-days (R2, 0.75; RMSR, 17.84; CIA, 242.6), corrected minimum temperature (R2, 0.75; RMSR, 17.82; AIC, 244.1); and CGI (R2, 0.74; RMSR, 17.85; AIC, 236.9). The correction of the agrometeorological variables using the relation between real and potential evapotranspiration (AET/PET) enhances, in general, the model prediction of DMAR.
publishDate 2011
dc.date.none.fl_str_mv 2011-08-24
dc.type.none.fl_str_mv
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://seer.sct.embrapa.br/index.php/pab/article/view/9684
url https://seer.sct.embrapa.br/index.php/pab/article/view/9684
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://seer.sct.embrapa.br/index.php/pab/article/view/9684/6421
https://seer.sct.embrapa.br/index.php/pab/article/downloadSuppFile/9684/4930
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Pesquisa Agropecuaria Brasileira
Pesquisa Agropecuária Brasileira
publisher.none.fl_str_mv Pesquisa Agropecuaria Brasileira
Pesquisa Agropecuária Brasileira
dc.source.none.fl_str_mv Pesquisa Agropecuaria Brasileira; v.46, n.7, jul. 2011; 675-681
Pesquisa Agropecuária Brasileira; v.46, n.7, jul. 2011; 675-681
1678-3921
0100-104x
reponame:Pesquisa Agropecuária Brasileira (Online)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Pesquisa Agropecuária Brasileira (Online)
collection Pesquisa Agropecuária Brasileira (Online)
repository.name.fl_str_mv Pesquisa Agropecuária Brasileira (Online) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv pab@sct.embrapa.br || sct.pab@embrapa.br
_version_ 1793416652092604416