Study of stem form using artificial neural networks and taper functions
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Pesquisa Florestal Brasileira (Online) |
Texto Completo: | https://pfb.cnpf.embrapa.br/pfb/index.php/pfb/article/view/867 |
Resumo: | Artificial neural networks (ANN) have great potential as an alternative to conventional regression analysis because of its learning capacity of data set information and the generalization of learning to unknown data. So, the aim of this study was to apply RNAs to estimate relative diameter, total and commercial volume, as well as to compare their performance in relation to conventional taper functions. Data from 47 trees of Eucalyptus sp. were used in the training and validation of ANNs and in adjusting Hradetzky and Garay taper functions. The performance of ANNs were similar to the taper functions for diameter estimative, furthermore the estimative of commercial and total volume applying ANNs were more accurate and presented less residues scattering than Garay and Hradetzky function. ANNs were accurate and appropriate for the estimation of volume and relative diameter. |
id |
EMBRAPA-5_5e987c0a1c96ee79a45c8f8c3b9494cc |
---|---|
oai_identifier_str |
oai:pfb.cnpf.embrapa.br/pfb:article/867 |
network_acronym_str |
EMBRAPA-5 |
network_name_str |
Pesquisa Florestal Brasileira (Online) |
repository_id_str |
|
spelling |
Study of stem form using artificial neural networks and taper functionsEstudo da forma do fuste utilizando redes neurais artificiais e funções de afilamentoCubageEucalyptArtificial intelligenceCubagemEucaliptoInteligência artificialArtificial neural networks (ANN) have great potential as an alternative to conventional regression analysis because of its learning capacity of data set information and the generalization of learning to unknown data. So, the aim of this study was to apply RNAs to estimate relative diameter, total and commercial volume, as well as to compare their performance in relation to conventional taper functions. Data from 47 trees of Eucalyptus sp. were used in the training and validation of ANNs and in adjusting Hradetzky and Garay taper functions. The performance of ANNs were similar to the taper functions for diameter estimative, furthermore the estimative of commercial and total volume applying ANNs were more accurate and presented less residues scattering than Garay and Hradetzky function. ANNs were accurate and appropriate for the estimation of volume and relative diameter.As redes neurais artificiais (RNA) possuem grande potencial como alternativa à análise de regressão convencional, dada a capacidade de aprendizado de informações de um conjunto de dados e a generalização desse aprendizado para dados desconhecidos. Nesse sentido, o objetivo do presente trabalho foi utilizar RNAs para a estimativa do diâmetro relativo, volume total e comercial, bem como a comparação do desempenho em relação a funções de afilamento convencionais. Dados provenientes de 47 árvores de Eucalyptus sp. foram utilizados no treinamento e validação das RNAs e no ajuste das funções de afilamento de Hradetzky e Garay. O desempenho das RNAs foi muito semelhante ao das funções de afilamento na estimava do diâmetro relativo. As estimativas de volume total e comercial com RNAs se mostraram mais precisas e com menor dispersão dos resíduos que Hradetzky e Garay. RNAs se mostraram acuradas e adequadas para a estimativa de diâmetro relativo e volume.Embrapa Florestas2015-06-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://pfb.cnpf.embrapa.br/pfb/index.php/pfb/article/view/86710.4336/2015.pfb.35.82.867Pesquisa Florestal Brasileira; v. 35 n. 82 (2015): abr./jun.; 119-127Pesquisa Florestal Brasileira; Vol. 35 No. 82 (2015): abr./jun.; 119-1271983-26051809-3647reponame:Pesquisa Florestal Brasileira (Online)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPAporhttps://pfb.cnpf.embrapa.br/pfb/index.php/pfb/article/view/867/412Copyright (c) 2015 Ana Beatriz Schikowski, Ana Paula Dalla Corte, Carlos Roberto Sanquettahttps://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessSchikowski, Ana BeatrizDalla Corte, Ana PaulaSanquetta, Carlos Roberto2017-04-28T12:44:45Zoai:pfb.cnpf.embrapa.br/pfb:article/867Revistahttps://pfb.cnpf.embrapa.br/pfb/index.php/pfb/PUBhttps://pfb.cnpf.embrapa.br/pfb/index.php/pfb/oaipfb@embrapa.br || revista.pfb@gmail.com || patricia.mattos@embrapa.br1983-26051809-3647opendoar:2017-04-28T12:44:45Pesquisa Florestal Brasileira (Online) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
Study of stem form using artificial neural networks and taper functions Estudo da forma do fuste utilizando redes neurais artificiais e funções de afilamento |
title |
Study of stem form using artificial neural networks and taper functions |
spellingShingle |
Study of stem form using artificial neural networks and taper functions Schikowski, Ana Beatriz Cubage Eucalypt Artificial intelligence Cubagem Eucalipto Inteligência artificial |
title_short |
Study of stem form using artificial neural networks and taper functions |
title_full |
Study of stem form using artificial neural networks and taper functions |
title_fullStr |
Study of stem form using artificial neural networks and taper functions |
title_full_unstemmed |
Study of stem form using artificial neural networks and taper functions |
title_sort |
Study of stem form using artificial neural networks and taper functions |
author |
Schikowski, Ana Beatriz |
author_facet |
Schikowski, Ana Beatriz Dalla Corte, Ana Paula Sanquetta, Carlos Roberto |
author_role |
author |
author2 |
Dalla Corte, Ana Paula Sanquetta, Carlos Roberto |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Schikowski, Ana Beatriz Dalla Corte, Ana Paula Sanquetta, Carlos Roberto |
dc.subject.por.fl_str_mv |
Cubage Eucalypt Artificial intelligence Cubagem Eucalipto Inteligência artificial |
topic |
Cubage Eucalypt Artificial intelligence Cubagem Eucalipto Inteligência artificial |
description |
Artificial neural networks (ANN) have great potential as an alternative to conventional regression analysis because of its learning capacity of data set information and the generalization of learning to unknown data. So, the aim of this study was to apply RNAs to estimate relative diameter, total and commercial volume, as well as to compare their performance in relation to conventional taper functions. Data from 47 trees of Eucalyptus sp. were used in the training and validation of ANNs and in adjusting Hradetzky and Garay taper functions. The performance of ANNs were similar to the taper functions for diameter estimative, furthermore the estimative of commercial and total volume applying ANNs were more accurate and presented less residues scattering than Garay and Hradetzky function. ANNs were accurate and appropriate for the estimation of volume and relative diameter. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-06-30 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://pfb.cnpf.embrapa.br/pfb/index.php/pfb/article/view/867 10.4336/2015.pfb.35.82.867 |
url |
https://pfb.cnpf.embrapa.br/pfb/index.php/pfb/article/view/867 |
identifier_str_mv |
10.4336/2015.pfb.35.82.867 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://pfb.cnpf.embrapa.br/pfb/index.php/pfb/article/view/867/412 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2015 Ana Beatriz Schikowski, Ana Paula Dalla Corte, Carlos Roberto Sanquetta https://creativecommons.org/licenses/by-nc-nd/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2015 Ana Beatriz Schikowski, Ana Paula Dalla Corte, Carlos Roberto Sanquetta https://creativecommons.org/licenses/by-nc-nd/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Embrapa Florestas |
publisher.none.fl_str_mv |
Embrapa Florestas |
dc.source.none.fl_str_mv |
Pesquisa Florestal Brasileira; v. 35 n. 82 (2015): abr./jun.; 119-127 Pesquisa Florestal Brasileira; Vol. 35 No. 82 (2015): abr./jun.; 119-127 1983-2605 1809-3647 reponame:Pesquisa Florestal Brasileira (Online) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Pesquisa Florestal Brasileira (Online) |
collection |
Pesquisa Florestal Brasileira (Online) |
repository.name.fl_str_mv |
Pesquisa Florestal Brasileira (Online) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
pfb@embrapa.br || revista.pfb@gmail.com || patricia.mattos@embrapa.br |
_version_ |
1783370935270637568 |