Predicting enzyme class from protein structure using Bayesian classification.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2006 |
Outros Autores: | , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
Texto Completo: | http://www.alice.cnptia.embrapa.br/alice/handle/doc/9196 |
Resumo: | ABSTRACT. Predicting enzyme class from protein structure parameters is a challenging problem in protein analysis. We developed a method to predict enzyme class that combines the strengths of statistical and data-mining methods. This method has a strong mathematical foundation and is simple to implement, achieving an accuracy of 45%. A comparison with the methods found in the literature designed to predict enzyme class showed that our method outperforms the existing methods. |
id |
EMBR_03da7e83441e7cb242316f38e10489a4 |
---|---|
oai_identifier_str |
oai:www.alice.cnptia.embrapa.br:doc/9196 |
network_acronym_str |
EMBR |
network_name_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository_id_str |
2154 |
spelling |
Predicting enzyme class from protein structure using Bayesian classification.BioinformáticaEstrutura de proteínaClasse de enzimaBayesian classificationProtein function predictionNaive BayesEnzyme classification numberBayesian classifierData classificationBioinformaticsProtein structureABSTRACT. Predicting enzyme class from protein structure parameters is a challenging problem in protein analysis. We developed a method to predict enzyme class that combines the strengths of statistical and data-mining methods. This method has a strong mathematical foundation and is simple to implement, achieving an accuracy of 45%. A comparison with the methods found in the literature designed to predict enzyme class showed that our method outperforms the existing methods.LUIZ C. BORRO, CNPTIA; STANLEY ROBSON DE MEDEIROS OLIVEIRA, CNPTIA; MICHEL EDUARDO BELEZA YAMAGISHI, CNPTIA; ADAUTO LUIZ MANCINI, CNPTIA; JOSE GILBERTO JARDINE, CNPTIA; IVAN MAZONI, CNPTIA; EDGARD HENRIQUE DOS SANTOS, CNPTIA; ROBERTO HIROSHI HIGA, CNPTIA; PAULA REGINA KUSER FALCAO, CNPTIA; GORAN NESHICH, CNPTIA.BORRO, L. C.OLIVEIRA, S. R. M.YAMAGISHI, M. E. B.MANCINI, A. L.JARDINE, J. G.MAZONI, I.SANTOS, E. H. dosHIGA, R. H.KUSER, P. R.NESHICH, G.2011-04-10T11:11:11Z2011-04-10T11:11:11Z2007-03-0720062017-05-17T11:11:11Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleGenetics and Molecular Research, v. 5, n. 1, p. 193-202, 2006.http://www.alice.cnptia.embrapa.br/alice/handle/doc/9196enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2017-05-18T01:24:58Zoai:www.alice.cnptia.embrapa.br:doc/9196Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542017-05-18T01:24:58falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542017-05-18T01:24:58Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
Predicting enzyme class from protein structure using Bayesian classification. |
title |
Predicting enzyme class from protein structure using Bayesian classification. |
spellingShingle |
Predicting enzyme class from protein structure using Bayesian classification. BORRO, L. C. Bioinformática Estrutura de proteína Classe de enzima Bayesian classification Protein function prediction Naive Bayes Enzyme classification number Bayesian classifier Data classification Bioinformatics Protein structure |
title_short |
Predicting enzyme class from protein structure using Bayesian classification. |
title_full |
Predicting enzyme class from protein structure using Bayesian classification. |
title_fullStr |
Predicting enzyme class from protein structure using Bayesian classification. |
title_full_unstemmed |
Predicting enzyme class from protein structure using Bayesian classification. |
title_sort |
Predicting enzyme class from protein structure using Bayesian classification. |
author |
BORRO, L. C. |
author_facet |
BORRO, L. C. OLIVEIRA, S. R. M. YAMAGISHI, M. E. B. MANCINI, A. L. JARDINE, J. G. MAZONI, I. SANTOS, E. H. dos HIGA, R. H. KUSER, P. R. NESHICH, G. |
author_role |
author |
author2 |
OLIVEIRA, S. R. M. YAMAGISHI, M. E. B. MANCINI, A. L. JARDINE, J. G. MAZONI, I. SANTOS, E. H. dos HIGA, R. H. KUSER, P. R. NESHICH, G. |
author2_role |
author author author author author author author author author |
dc.contributor.none.fl_str_mv |
LUIZ C. BORRO, CNPTIA; STANLEY ROBSON DE MEDEIROS OLIVEIRA, CNPTIA; MICHEL EDUARDO BELEZA YAMAGISHI, CNPTIA; ADAUTO LUIZ MANCINI, CNPTIA; JOSE GILBERTO JARDINE, CNPTIA; IVAN MAZONI, CNPTIA; EDGARD HENRIQUE DOS SANTOS, CNPTIA; ROBERTO HIROSHI HIGA, CNPTIA; PAULA REGINA KUSER FALCAO, CNPTIA; GORAN NESHICH, CNPTIA. |
dc.contributor.author.fl_str_mv |
BORRO, L. C. OLIVEIRA, S. R. M. YAMAGISHI, M. E. B. MANCINI, A. L. JARDINE, J. G. MAZONI, I. SANTOS, E. H. dos HIGA, R. H. KUSER, P. R. NESHICH, G. |
dc.subject.por.fl_str_mv |
Bioinformática Estrutura de proteína Classe de enzima Bayesian classification Protein function prediction Naive Bayes Enzyme classification number Bayesian classifier Data classification Bioinformatics Protein structure |
topic |
Bioinformática Estrutura de proteína Classe de enzima Bayesian classification Protein function prediction Naive Bayes Enzyme classification number Bayesian classifier Data classification Bioinformatics Protein structure |
description |
ABSTRACT. Predicting enzyme class from protein structure parameters is a challenging problem in protein analysis. We developed a method to predict enzyme class that combines the strengths of statistical and data-mining methods. This method has a strong mathematical foundation and is simple to implement, achieving an accuracy of 45%. A comparison with the methods found in the literature designed to predict enzyme class showed that our method outperforms the existing methods. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006 2007-03-07 2011-04-10T11:11:11Z 2011-04-10T11:11:11Z 2017-05-17T11:11:11Z |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Genetics and Molecular Research, v. 5, n. 1, p. 193-202, 2006. http://www.alice.cnptia.embrapa.br/alice/handle/doc/9196 |
identifier_str_mv |
Genetics and Molecular Research, v. 5, n. 1, p. 193-202, 2006. |
url |
http://www.alice.cnptia.embrapa.br/alice/handle/doc/9196 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
collection |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository.name.fl_str_mv |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
cg-riaa@embrapa.br |
_version_ |
1794503436087066624 |