Projection of climate change impacts on net primary productivity of the legal Amazon - Brazil.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
Texto Completo: | http://www.alice.cnptia.embrapa.br/alice/handle/doc/1151595 |
Resumo: | Abstract. The Amazon Rainforest is one of the main carbon sinks (CO2) on Earth. However, recently, owing to anthropogenic activities and climate change, it has lost its stability in CO2 absorption. Therefore, understanding the dynamics of future climate change scenarios is essential. We assessed the influence of future climate change scenarios on NPP (biomass) levels in the Amazon Forest using ML models. The tested models were Bayesian, linear, and random forest models. The current scenario was evaluated using 19 bioclimatic covariates (WorldClim dataset). Future scenarios were based on RCPs 2.6 and 8.5 (based on the MIROC5 and HadGEM2-ES models). Random Forest had the best performance statistics (R² = 0.71 in training and 0.68 in the holdout-test). These climate change scenarios imply an increase in the average NPP for the Amazon forest, especially with the greater intensification in RCP 2.6 (10 and 12 % for the HadGEM2-ES and MIROC5 models, respectively). Forests (evergreen broadleaf forest areas) will have a greater carbon fixation capacity. In general, the Amazon forest will have an increased carbon fixation capacity by the end of the century. |
id |
EMBR_072560bac83f3005fceccb6bf4aca985 |
---|---|
oai_identifier_str |
oai:www.alice.cnptia.embrapa.br:doc/1151595 |
network_acronym_str |
EMBR |
network_name_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository_id_str |
2154 |
spelling |
Projection of climate change impacts on net primary productivity of the legal Amazon - Brazil.Aprendizado de máquinaFloresta AmazônicaFloresta aleatóriaSumidouro de carbonoMudanças climáticasRandom ForestMachine LearningCarbon sinkAmazon ForestClimate changeAbstract. The Amazon Rainforest is one of the main carbon sinks (CO2) on Earth. However, recently, owing to anthropogenic activities and climate change, it has lost its stability in CO2 absorption. Therefore, understanding the dynamics of future climate change scenarios is essential. We assessed the influence of future climate change scenarios on NPP (biomass) levels in the Amazon Forest using ML models. The tested models were Bayesian, linear, and random forest models. The current scenario was evaluated using 19 bioclimatic covariates (WorldClim dataset). Future scenarios were based on RCPs 2.6 and 8.5 (based on the MIROC5 and HadGEM2-ES models). Random Forest had the best performance statistics (R² = 0.71 in training and 0.68 in the holdout-test). These climate change scenarios imply an increase in the average NPP for the Amazon forest, especially with the greater intensification in RCP 2.6 (10 and 12 % for the HadGEM2-ES and MIROC5 models, respectively). Forests (evergreen broadleaf forest areas) will have a greater carbon fixation capacity. In general, the Amazon forest will have an increased carbon fixation capacity by the end of the century.LUCAS AUGUSTO PEREIRA DA SILVA, UNIVERSIDADE FEDERAL DE UBERLÂNDIA; CRISTIANO MARCELO PEREIRA DE SOUZA, UNIVERSIDADE ESTADUAL DE MONTES CLAROS; CLAUDIONOR RIBEIRO DA SILVA, UNIVERSIDADE FEDERAL DE UBERLÂNDIA; EDSON LUIS BOLFE, CNPTIA, UNIVERSIDADE ESTADUAL DE CAMPINAS; ANDRE MEDEIROS ROCHA, UNIVERSIDADE DE SÃO PAULO.SILVA, L. A. P. daSOUZA, C. M. P. deSILVA, C. R. daBOLFE, E. L.ROCHA, A. M.2023-02-08T16:01:20Z2023-02-08T16:01:20Z2023-02-082023info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleCaderno de Geografia, v. 33, n. 72, p. 110-130, jan./mar. 2023.http://www.alice.cnptia.embrapa.br/alice/handle/doc/115159510.5752/p.2318-2962.2023v33n.72p.110enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2023-02-08T16:01:20Zoai:www.alice.cnptia.embrapa.br:doc/1151595Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542023-02-08T16:01:20falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542023-02-08T16:01:20Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
Projection of climate change impacts on net primary productivity of the legal Amazon - Brazil. |
title |
Projection of climate change impacts on net primary productivity of the legal Amazon - Brazil. |
spellingShingle |
Projection of climate change impacts on net primary productivity of the legal Amazon - Brazil. SILVA, L. A. P. da Aprendizado de máquina Floresta Amazônica Floresta aleatória Sumidouro de carbono Mudanças climáticas Random Forest Machine Learning Carbon sink Amazon Forest Climate change |
title_short |
Projection of climate change impacts on net primary productivity of the legal Amazon - Brazil. |
title_full |
Projection of climate change impacts on net primary productivity of the legal Amazon - Brazil. |
title_fullStr |
Projection of climate change impacts on net primary productivity of the legal Amazon - Brazil. |
title_full_unstemmed |
Projection of climate change impacts on net primary productivity of the legal Amazon - Brazil. |
title_sort |
Projection of climate change impacts on net primary productivity of the legal Amazon - Brazil. |
author |
SILVA, L. A. P. da |
author_facet |
SILVA, L. A. P. da SOUZA, C. M. P. de SILVA, C. R. da BOLFE, E. L. ROCHA, A. M. |
author_role |
author |
author2 |
SOUZA, C. M. P. de SILVA, C. R. da BOLFE, E. L. ROCHA, A. M. |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
LUCAS AUGUSTO PEREIRA DA SILVA, UNIVERSIDADE FEDERAL DE UBERLÂNDIA; CRISTIANO MARCELO PEREIRA DE SOUZA, UNIVERSIDADE ESTADUAL DE MONTES CLAROS; CLAUDIONOR RIBEIRO DA SILVA, UNIVERSIDADE FEDERAL DE UBERLÂNDIA; EDSON LUIS BOLFE, CNPTIA, UNIVERSIDADE ESTADUAL DE CAMPINAS; ANDRE MEDEIROS ROCHA, UNIVERSIDADE DE SÃO PAULO. |
dc.contributor.author.fl_str_mv |
SILVA, L. A. P. da SOUZA, C. M. P. de SILVA, C. R. da BOLFE, E. L. ROCHA, A. M. |
dc.subject.por.fl_str_mv |
Aprendizado de máquina Floresta Amazônica Floresta aleatória Sumidouro de carbono Mudanças climáticas Random Forest Machine Learning Carbon sink Amazon Forest Climate change |
topic |
Aprendizado de máquina Floresta Amazônica Floresta aleatória Sumidouro de carbono Mudanças climáticas Random Forest Machine Learning Carbon sink Amazon Forest Climate change |
description |
Abstract. The Amazon Rainforest is one of the main carbon sinks (CO2) on Earth. However, recently, owing to anthropogenic activities and climate change, it has lost its stability in CO2 absorption. Therefore, understanding the dynamics of future climate change scenarios is essential. We assessed the influence of future climate change scenarios on NPP (biomass) levels in the Amazon Forest using ML models. The tested models were Bayesian, linear, and random forest models. The current scenario was evaluated using 19 bioclimatic covariates (WorldClim dataset). Future scenarios were based on RCPs 2.6 and 8.5 (based on the MIROC5 and HadGEM2-ES models). Random Forest had the best performance statistics (R² = 0.71 in training and 0.68 in the holdout-test). These climate change scenarios imply an increase in the average NPP for the Amazon forest, especially with the greater intensification in RCP 2.6 (10 and 12 % for the HadGEM2-ES and MIROC5 models, respectively). Forests (evergreen broadleaf forest areas) will have a greater carbon fixation capacity. In general, the Amazon forest will have an increased carbon fixation capacity by the end of the century. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-02-08T16:01:20Z 2023-02-08T16:01:20Z 2023-02-08 2023 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Caderno de Geografia, v. 33, n. 72, p. 110-130, jan./mar. 2023. http://www.alice.cnptia.embrapa.br/alice/handle/doc/1151595 10.5752/p.2318-2962.2023v33n.72p.110 |
identifier_str_mv |
Caderno de Geografia, v. 33, n. 72, p. 110-130, jan./mar. 2023. 10.5752/p.2318-2962.2023v33n.72p.110 |
url |
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1151595 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
collection |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository.name.fl_str_mv |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
cg-riaa@embrapa.br |
_version_ |
1794503539517554688 |