Projection of climate change impacts on net primary productivity of the legal Amazon - Brazil.

Detalhes bibliográficos
Autor(a) principal: SILVA, L. A. P. da
Data de Publicação: 2023
Outros Autores: SOUZA, C. M. P. de, SILVA, C. R. da, BOLFE, E. L., ROCHA, A. M.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1151595
Resumo: Abstract. The Amazon Rainforest is one of the main carbon sinks (CO2) on Earth. However, recently, owing to anthropogenic activities and climate change, it has lost its stability in CO2 absorption. Therefore, understanding the dynamics of future climate change scenarios is essential. We assessed the influence of future climate change scenarios on NPP (biomass) levels in the Amazon Forest using ML models. The tested models were Bayesian, linear, and random forest models. The current scenario was evaluated using 19 bioclimatic covariates (WorldClim dataset). Future scenarios were based on RCPs 2.6 and 8.5 (based on the MIROC5 and HadGEM2-ES models). Random Forest had the best performance statistics (R² = 0.71 in training and 0.68 in the holdout-test). These climate change scenarios imply an increase in the average NPP for the Amazon forest, especially with the greater intensification in RCP 2.6 (10 and 12 % for the HadGEM2-ES and MIROC5 models, respectively). Forests (evergreen broadleaf forest areas) will have a greater carbon fixation capacity. In general, the Amazon forest will have an increased carbon fixation capacity by the end of the century.
id EMBR_072560bac83f3005fceccb6bf4aca985
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/1151595
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling Projection of climate change impacts on net primary productivity of the legal Amazon - Brazil.Aprendizado de máquinaFloresta AmazônicaFloresta aleatóriaSumidouro de carbonoMudanças climáticasRandom ForestMachine LearningCarbon sinkAmazon ForestClimate changeAbstract. The Amazon Rainforest is one of the main carbon sinks (CO2) on Earth. However, recently, owing to anthropogenic activities and climate change, it has lost its stability in CO2 absorption. Therefore, understanding the dynamics of future climate change scenarios is essential. We assessed the influence of future climate change scenarios on NPP (biomass) levels in the Amazon Forest using ML models. The tested models were Bayesian, linear, and random forest models. The current scenario was evaluated using 19 bioclimatic covariates (WorldClim dataset). Future scenarios were based on RCPs 2.6 and 8.5 (based on the MIROC5 and HadGEM2-ES models). Random Forest had the best performance statistics (R² = 0.71 in training and 0.68 in the holdout-test). These climate change scenarios imply an increase in the average NPP for the Amazon forest, especially with the greater intensification in RCP 2.6 (10 and 12 % for the HadGEM2-ES and MIROC5 models, respectively). Forests (evergreen broadleaf forest areas) will have a greater carbon fixation capacity. In general, the Amazon forest will have an increased carbon fixation capacity by the end of the century.LUCAS AUGUSTO PEREIRA DA SILVA, UNIVERSIDADE FEDERAL DE UBERLÂNDIA; CRISTIANO MARCELO PEREIRA DE SOUZA, UNIVERSIDADE ESTADUAL DE MONTES CLAROS; CLAUDIONOR RIBEIRO DA SILVA, UNIVERSIDADE FEDERAL DE UBERLÂNDIA; EDSON LUIS BOLFE, CNPTIA, UNIVERSIDADE ESTADUAL DE CAMPINAS; ANDRE MEDEIROS ROCHA, UNIVERSIDADE DE SÃO PAULO.SILVA, L. A. P. daSOUZA, C. M. P. deSILVA, C. R. daBOLFE, E. L.ROCHA, A. M.2023-02-08T16:01:20Z2023-02-08T16:01:20Z2023-02-082023info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleCaderno de Geografia, v. 33, n. 72, p. 110-130, jan./mar. 2023.http://www.alice.cnptia.embrapa.br/alice/handle/doc/115159510.5752/p.2318-2962.2023v33n.72p.110enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2023-02-08T16:01:20Zoai:www.alice.cnptia.embrapa.br:doc/1151595Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542023-02-08T16:01:20falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542023-02-08T16:01:20Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Projection of climate change impacts on net primary productivity of the legal Amazon - Brazil.
title Projection of climate change impacts on net primary productivity of the legal Amazon - Brazil.
spellingShingle Projection of climate change impacts on net primary productivity of the legal Amazon - Brazil.
SILVA, L. A. P. da
Aprendizado de máquina
Floresta Amazônica
Floresta aleatória
Sumidouro de carbono
Mudanças climáticas
Random Forest
Machine Learning
Carbon sink
Amazon Forest
Climate change
title_short Projection of climate change impacts on net primary productivity of the legal Amazon - Brazil.
title_full Projection of climate change impacts on net primary productivity of the legal Amazon - Brazil.
title_fullStr Projection of climate change impacts on net primary productivity of the legal Amazon - Brazil.
title_full_unstemmed Projection of climate change impacts on net primary productivity of the legal Amazon - Brazil.
title_sort Projection of climate change impacts on net primary productivity of the legal Amazon - Brazil.
author SILVA, L. A. P. da
author_facet SILVA, L. A. P. da
SOUZA, C. M. P. de
SILVA, C. R. da
BOLFE, E. L.
ROCHA, A. M.
author_role author
author2 SOUZA, C. M. P. de
SILVA, C. R. da
BOLFE, E. L.
ROCHA, A. M.
author2_role author
author
author
author
dc.contributor.none.fl_str_mv LUCAS AUGUSTO PEREIRA DA SILVA, UNIVERSIDADE FEDERAL DE UBERLÂNDIA; CRISTIANO MARCELO PEREIRA DE SOUZA, UNIVERSIDADE ESTADUAL DE MONTES CLAROS; CLAUDIONOR RIBEIRO DA SILVA, UNIVERSIDADE FEDERAL DE UBERLÂNDIA; EDSON LUIS BOLFE, CNPTIA, UNIVERSIDADE ESTADUAL DE CAMPINAS; ANDRE MEDEIROS ROCHA, UNIVERSIDADE DE SÃO PAULO.
dc.contributor.author.fl_str_mv SILVA, L. A. P. da
SOUZA, C. M. P. de
SILVA, C. R. da
BOLFE, E. L.
ROCHA, A. M.
dc.subject.por.fl_str_mv Aprendizado de máquina
Floresta Amazônica
Floresta aleatória
Sumidouro de carbono
Mudanças climáticas
Random Forest
Machine Learning
Carbon sink
Amazon Forest
Climate change
topic Aprendizado de máquina
Floresta Amazônica
Floresta aleatória
Sumidouro de carbono
Mudanças climáticas
Random Forest
Machine Learning
Carbon sink
Amazon Forest
Climate change
description Abstract. The Amazon Rainforest is one of the main carbon sinks (CO2) on Earth. However, recently, owing to anthropogenic activities and climate change, it has lost its stability in CO2 absorption. Therefore, understanding the dynamics of future climate change scenarios is essential. We assessed the influence of future climate change scenarios on NPP (biomass) levels in the Amazon Forest using ML models. The tested models were Bayesian, linear, and random forest models. The current scenario was evaluated using 19 bioclimatic covariates (WorldClim dataset). Future scenarios were based on RCPs 2.6 and 8.5 (based on the MIROC5 and HadGEM2-ES models). Random Forest had the best performance statistics (R² = 0.71 in training and 0.68 in the holdout-test). These climate change scenarios imply an increase in the average NPP for the Amazon forest, especially with the greater intensification in RCP 2.6 (10 and 12 % for the HadGEM2-ES and MIROC5 models, respectively). Forests (evergreen broadleaf forest areas) will have a greater carbon fixation capacity. In general, the Amazon forest will have an increased carbon fixation capacity by the end of the century.
publishDate 2023
dc.date.none.fl_str_mv 2023-02-08T16:01:20Z
2023-02-08T16:01:20Z
2023-02-08
2023
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv Caderno de Geografia, v. 33, n. 72, p. 110-130, jan./mar. 2023.
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1151595
10.5752/p.2318-2962.2023v33n.72p.110
identifier_str_mv Caderno de Geografia, v. 33, n. 72, p. 110-130, jan./mar. 2023.
10.5752/p.2318-2962.2023v33n.72p.110
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/1151595
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1794503539517554688