On the accuracy of threshold genomic prediction models for leaf miner and leaf rust resistance in arabica coffee.

Detalhes bibliográficos
Autor(a) principal: CARVALHO, H. F.
Data de Publicação: 2023
Outros Autores: FERRÃO, L. F. V., GALLI, G., NONATO, J. V. A., PADILHA, L., MALUF, M. P., RESENDE JR., M. F. R. de, FRITSCHE-NETO, R., GUERREIRO-FILHO, O.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1156023
https://doi.org/10.1007/s11295-022-01581-8
Resumo: Obtaining resistance cultivars for leaf miner and leaf rust are the main important strategy of Brazil?s national coffee breeding program. The narrow genetic basis, and founder effect consequences, lead to challenges in quantifying and detecting genetic diversity for these traits. Biotechnology tools allied with classical breeding strategies are powerful in detecting variability and deploying a precision selection. The selection based on the genetic merit of an individual obtained from thousands of single nucleotide polymorphism effects is known as genomic selection. The ordinal scale principally makes the resistance evaluation of the leaf rust and leaf miner of the score, categorizing the phenotypes following the discrete (ordinal) distribution. Hence, this distribution can be better analyzed by threshold models. Our goals were to optimize genomic prediction models for coffee resistance to leaf rust and leaf miner via threshold models and compare pedigree and genomic relationship matrices to underlying prediction models. We have observed that the genomic model with the genomic relationship matrix performed better for all scenarios. For the traits with at least five degrees of scores, the threshold models performed better, whereas for a trait with ten degrees of scores, we see no advantage to using a threshold model for genomic prediction.
id EMBR_0d0b71bb256f0122dbb6aa3e59d26bcb
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/1156023
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling On the accuracy of threshold genomic prediction models for leaf miner and leaf rust resistance in arabica coffee.Coffea arabica var. arabicaLeucopteraHemileiaLeaf rustGenomicsObtaining resistance cultivars for leaf miner and leaf rust are the main important strategy of Brazil?s national coffee breeding program. The narrow genetic basis, and founder effect consequences, lead to challenges in quantifying and detecting genetic diversity for these traits. Biotechnology tools allied with classical breeding strategies are powerful in detecting variability and deploying a precision selection. The selection based on the genetic merit of an individual obtained from thousands of single nucleotide polymorphism effects is known as genomic selection. The ordinal scale principally makes the resistance evaluation of the leaf rust and leaf miner of the score, categorizing the phenotypes following the discrete (ordinal) distribution. Hence, this distribution can be better analyzed by threshold models. Our goals were to optimize genomic prediction models for coffee resistance to leaf rust and leaf miner via threshold models and compare pedigree and genomic relationship matrices to underlying prediction models. We have observed that the genomic model with the genomic relationship matrix performed better for all scenarios. For the traits with at least five degrees of scores, the threshold models performed better, whereas for a trait with ten degrees of scores, we see no advantage to using a threshold model for genomic prediction.HUMBERTO FANELLI CARVALHO, INSTITUTO AGRONÔMICO DE CAMPINAS; LUÍS FELIPE VENTORIM FERRÃO, UNIVERSITY OF FLORIDA; GIOVANNI GALLI, LOUISIANA STATE UNIVERSITY; JULIANA VIEIRA ALMEIDA NONATO, INSTITUTO AGRONÔMICO DE CAMPINAS; LILIAN PADILHA, CNPCa; MIRIAN PEREZ MALUF, CNPCa; MÁRCIO FERNANDO RIBEIRO DE RESENDE JR., UNIVERSITY OF FLORIDA; ROBERTO FRITSCHE-NETO, LOUISIANA STATE UNIVERSITY; OLIVEIRO GUERREIRO-FILHO, INSTITUTO AGRONÔMICO DE CAMPINAS.CARVALHO, H. F.FERRÃO, L. F. V.GALLI, G.NONATO, J. V. A.PADILHA, L.MALUF, M. P.RESENDE JR., M. F. R. deFRITSCHE-NETO, R.GUERREIRO-FILHO, O.2023-08-21T19:25:14Z2023-08-21T19:25:14Z2023-08-212023info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article10 p.Tree Genetics & Genomes, v. 19, n. 1, 2023.http://www.alice.cnptia.embrapa.br/alice/handle/doc/1156023https://doi.org/10.1007/s11295-022-01581-8enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2023-08-21T19:25:14Zoai:www.alice.cnptia.embrapa.br:doc/1156023Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542023-08-21T19:25:14falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542023-08-21T19:25:14Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv On the accuracy of threshold genomic prediction models for leaf miner and leaf rust resistance in arabica coffee.
title On the accuracy of threshold genomic prediction models for leaf miner and leaf rust resistance in arabica coffee.
spellingShingle On the accuracy of threshold genomic prediction models for leaf miner and leaf rust resistance in arabica coffee.
CARVALHO, H. F.
Coffea arabica var. arabica
Leucoptera
Hemileia
Leaf rust
Genomics
title_short On the accuracy of threshold genomic prediction models for leaf miner and leaf rust resistance in arabica coffee.
title_full On the accuracy of threshold genomic prediction models for leaf miner and leaf rust resistance in arabica coffee.
title_fullStr On the accuracy of threshold genomic prediction models for leaf miner and leaf rust resistance in arabica coffee.
title_full_unstemmed On the accuracy of threshold genomic prediction models for leaf miner and leaf rust resistance in arabica coffee.
title_sort On the accuracy of threshold genomic prediction models for leaf miner and leaf rust resistance in arabica coffee.
author CARVALHO, H. F.
author_facet CARVALHO, H. F.
FERRÃO, L. F. V.
GALLI, G.
NONATO, J. V. A.
PADILHA, L.
MALUF, M. P.
RESENDE JR., M. F. R. de
FRITSCHE-NETO, R.
GUERREIRO-FILHO, O.
author_role author
author2 FERRÃO, L. F. V.
GALLI, G.
NONATO, J. V. A.
PADILHA, L.
MALUF, M. P.
RESENDE JR., M. F. R. de
FRITSCHE-NETO, R.
GUERREIRO-FILHO, O.
author2_role author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv HUMBERTO FANELLI CARVALHO, INSTITUTO AGRONÔMICO DE CAMPINAS; LUÍS FELIPE VENTORIM FERRÃO, UNIVERSITY OF FLORIDA; GIOVANNI GALLI, LOUISIANA STATE UNIVERSITY; JULIANA VIEIRA ALMEIDA NONATO, INSTITUTO AGRONÔMICO DE CAMPINAS; LILIAN PADILHA, CNPCa; MIRIAN PEREZ MALUF, CNPCa; MÁRCIO FERNANDO RIBEIRO DE RESENDE JR., UNIVERSITY OF FLORIDA; ROBERTO FRITSCHE-NETO, LOUISIANA STATE UNIVERSITY; OLIVEIRO GUERREIRO-FILHO, INSTITUTO AGRONÔMICO DE CAMPINAS.
dc.contributor.author.fl_str_mv CARVALHO, H. F.
FERRÃO, L. F. V.
GALLI, G.
NONATO, J. V. A.
PADILHA, L.
MALUF, M. P.
RESENDE JR., M. F. R. de
FRITSCHE-NETO, R.
GUERREIRO-FILHO, O.
dc.subject.por.fl_str_mv Coffea arabica var. arabica
Leucoptera
Hemileia
Leaf rust
Genomics
topic Coffea arabica var. arabica
Leucoptera
Hemileia
Leaf rust
Genomics
description Obtaining resistance cultivars for leaf miner and leaf rust are the main important strategy of Brazil?s national coffee breeding program. The narrow genetic basis, and founder effect consequences, lead to challenges in quantifying and detecting genetic diversity for these traits. Biotechnology tools allied with classical breeding strategies are powerful in detecting variability and deploying a precision selection. The selection based on the genetic merit of an individual obtained from thousands of single nucleotide polymorphism effects is known as genomic selection. The ordinal scale principally makes the resistance evaluation of the leaf rust and leaf miner of the score, categorizing the phenotypes following the discrete (ordinal) distribution. Hence, this distribution can be better analyzed by threshold models. Our goals were to optimize genomic prediction models for coffee resistance to leaf rust and leaf miner via threshold models and compare pedigree and genomic relationship matrices to underlying prediction models. We have observed that the genomic model with the genomic relationship matrix performed better for all scenarios. For the traits with at least five degrees of scores, the threshold models performed better, whereas for a trait with ten degrees of scores, we see no advantage to using a threshold model for genomic prediction.
publishDate 2023
dc.date.none.fl_str_mv 2023-08-21T19:25:14Z
2023-08-21T19:25:14Z
2023-08-21
2023
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv Tree Genetics & Genomes, v. 19, n. 1, 2023.
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1156023
https://doi.org/10.1007/s11295-022-01581-8
identifier_str_mv Tree Genetics & Genomes, v. 19, n. 1, 2023.
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/1156023
https://doi.org/10.1007/s11295-022-01581-8
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 10 p.
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1794503548438839296