Comparison of land-cover classification methods in the Brazilian Amazon Basin.

Detalhes bibliográficos
Autor(a) principal: LU, D.
Data de Publicação: 2004
Outros Autores: MAUSEL, P., BATISTELLA, M., MORAN, E.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/17039
Resumo: Four distinctly different classifiers were used to analyze multispectral data. Which of these classifiers is most suitable for a specific study area is not always clear. This paper provides a comparison of minimum-distance classifier (MDC), maximumlikelihood classifier (MLC), extraction and classification of homogeneous objects (ECHO), and decision-tree classifier based on linear spectral mixture analysis (DTC-LSMA). Each of the classifiers used both Landsat Thematic Mapper data and identical field-based training sample datasets in a western Brazilian Amazon study area. Seven land-cover classes? mature forest, advanced secondary succession, initial secondary succession, pasture lands, agricultural lands, bare lands, and water?were classified. Classification results indicate that the DTC-LSMA and ECHO classifiers were more accurate than were the MDC and MLC. The overall accuracy of the DTCLSMA approach was 86 percent with a 0.82 kappa coefficient and ECHO had an accuracy of 83 percent with a 0.79 kappa coefficient. The accuracy of the other classifiers ranged from 77 to 80 percent with kappa coefficients from 0.72 to 0.75.
id EMBR_1ed56edf5ff5f2b6c9c36c6023c5db37
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/17039
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling Comparison of land-cover classification methods in the Brazilian Amazon Basin.MapeamentoAmazonia brasileiraAmazonasBacia HidrográficaFloresta Tropical ÚmidaSatéliteFour distinctly different classifiers were used to analyze multispectral data. Which of these classifiers is most suitable for a specific study area is not always clear. This paper provides a comparison of minimum-distance classifier (MDC), maximumlikelihood classifier (MLC), extraction and classification of homogeneous objects (ECHO), and decision-tree classifier based on linear spectral mixture analysis (DTC-LSMA). Each of the classifiers used both Landsat Thematic Mapper data and identical field-based training sample datasets in a western Brazilian Amazon study area. Seven land-cover classes? mature forest, advanced secondary succession, initial secondary succession, pasture lands, agricultural lands, bare lands, and water?were classified. Classification results indicate that the DTC-LSMA and ECHO classifiers were more accurate than were the MDC and MLC. The overall accuracy of the DTCLSMA approach was 86 percent with a 0.82 kappa coefficient and ECHO had an accuracy of 83 percent with a 0.79 kappa coefficient. The accuracy of the other classifiers ranged from 77 to 80 percent with kappa coefficients from 0.72 to 0.75.1-2 e 4: Indiana University; 3: Embrapa Monitoramento por Satélite.LU, D.MAUSEL, P.BATISTELLA, M.MORAN, E.2011-04-10T11:11:11Z2011-04-10T11:11:11Z2004-04-2920042015-03-30T11:11:11Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlePhotogrammetric Engineering & Remote Sensing, v. 70, n. 6, p. 723-731, jun. 2004.http://www.alice.cnptia.embrapa.br/alice/handle/doc/17039enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2017-08-16T00:53:02Zoai:www.alice.cnptia.embrapa.br:doc/17039Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542017-08-16T00:53:02falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542017-08-16T00:53:02Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Comparison of land-cover classification methods in the Brazilian Amazon Basin.
title Comparison of land-cover classification methods in the Brazilian Amazon Basin.
spellingShingle Comparison of land-cover classification methods in the Brazilian Amazon Basin.
LU, D.
Mapeamento
Amazonia brasileira
Amazonas
Bacia Hidrográfica
Floresta Tropical Úmida
Satélite
title_short Comparison of land-cover classification methods in the Brazilian Amazon Basin.
title_full Comparison of land-cover classification methods in the Brazilian Amazon Basin.
title_fullStr Comparison of land-cover classification methods in the Brazilian Amazon Basin.
title_full_unstemmed Comparison of land-cover classification methods in the Brazilian Amazon Basin.
title_sort Comparison of land-cover classification methods in the Brazilian Amazon Basin.
author LU, D.
author_facet LU, D.
MAUSEL, P.
BATISTELLA, M.
MORAN, E.
author_role author
author2 MAUSEL, P.
BATISTELLA, M.
MORAN, E.
author2_role author
author
author
dc.contributor.none.fl_str_mv 1-2 e 4: Indiana University; 3: Embrapa Monitoramento por Satélite.
dc.contributor.author.fl_str_mv LU, D.
MAUSEL, P.
BATISTELLA, M.
MORAN, E.
dc.subject.por.fl_str_mv Mapeamento
Amazonia brasileira
Amazonas
Bacia Hidrográfica
Floresta Tropical Úmida
Satélite
topic Mapeamento
Amazonia brasileira
Amazonas
Bacia Hidrográfica
Floresta Tropical Úmida
Satélite
description Four distinctly different classifiers were used to analyze multispectral data. Which of these classifiers is most suitable for a specific study area is not always clear. This paper provides a comparison of minimum-distance classifier (MDC), maximumlikelihood classifier (MLC), extraction and classification of homogeneous objects (ECHO), and decision-tree classifier based on linear spectral mixture analysis (DTC-LSMA). Each of the classifiers used both Landsat Thematic Mapper data and identical field-based training sample datasets in a western Brazilian Amazon study area. Seven land-cover classes? mature forest, advanced secondary succession, initial secondary succession, pasture lands, agricultural lands, bare lands, and water?were classified. Classification results indicate that the DTC-LSMA and ECHO classifiers were more accurate than were the MDC and MLC. The overall accuracy of the DTCLSMA approach was 86 percent with a 0.82 kappa coefficient and ECHO had an accuracy of 83 percent with a 0.79 kappa coefficient. The accuracy of the other classifiers ranged from 77 to 80 percent with kappa coefficients from 0.72 to 0.75.
publishDate 2004
dc.date.none.fl_str_mv 2004-04-29
2004
2011-04-10T11:11:11Z
2011-04-10T11:11:11Z
2015-03-30T11:11:11Z
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv Photogrammetric Engineering & Remote Sensing, v. 70, n. 6, p. 723-731, jun. 2004.
http://www.alice.cnptia.embrapa.br/alice/handle/doc/17039
identifier_str_mv Photogrammetric Engineering & Remote Sensing, v. 70, n. 6, p. 723-731, jun. 2004.
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/17039
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1794503393075527680