Comparison of land-cover classification methods in the Brazilian Amazon Basin.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2004 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
Texto Completo: | http://www.alice.cnptia.embrapa.br/alice/handle/doc/17039 |
Resumo: | Four distinctly different classifiers were used to analyze multispectral data. Which of these classifiers is most suitable for a specific study area is not always clear. This paper provides a comparison of minimum-distance classifier (MDC), maximumlikelihood classifier (MLC), extraction and classification of homogeneous objects (ECHO), and decision-tree classifier based on linear spectral mixture analysis (DTC-LSMA). Each of the classifiers used both Landsat Thematic Mapper data and identical field-based training sample datasets in a western Brazilian Amazon study area. Seven land-cover classes? mature forest, advanced secondary succession, initial secondary succession, pasture lands, agricultural lands, bare lands, and water?were classified. Classification results indicate that the DTC-LSMA and ECHO classifiers were more accurate than were the MDC and MLC. The overall accuracy of the DTCLSMA approach was 86 percent with a 0.82 kappa coefficient and ECHO had an accuracy of 83 percent with a 0.79 kappa coefficient. The accuracy of the other classifiers ranged from 77 to 80 percent with kappa coefficients from 0.72 to 0.75. |
id |
EMBR_1ed56edf5ff5f2b6c9c36c6023c5db37 |
---|---|
oai_identifier_str |
oai:www.alice.cnptia.embrapa.br:doc/17039 |
network_acronym_str |
EMBR |
network_name_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository_id_str |
2154 |
spelling |
Comparison of land-cover classification methods in the Brazilian Amazon Basin.MapeamentoAmazonia brasileiraAmazonasBacia HidrográficaFloresta Tropical ÚmidaSatéliteFour distinctly different classifiers were used to analyze multispectral data. Which of these classifiers is most suitable for a specific study area is not always clear. This paper provides a comparison of minimum-distance classifier (MDC), maximumlikelihood classifier (MLC), extraction and classification of homogeneous objects (ECHO), and decision-tree classifier based on linear spectral mixture analysis (DTC-LSMA). Each of the classifiers used both Landsat Thematic Mapper data and identical field-based training sample datasets in a western Brazilian Amazon study area. Seven land-cover classes? mature forest, advanced secondary succession, initial secondary succession, pasture lands, agricultural lands, bare lands, and water?were classified. Classification results indicate that the DTC-LSMA and ECHO classifiers were more accurate than were the MDC and MLC. The overall accuracy of the DTCLSMA approach was 86 percent with a 0.82 kappa coefficient and ECHO had an accuracy of 83 percent with a 0.79 kappa coefficient. The accuracy of the other classifiers ranged from 77 to 80 percent with kappa coefficients from 0.72 to 0.75.1-2 e 4: Indiana University; 3: Embrapa Monitoramento por Satélite.LU, D.MAUSEL, P.BATISTELLA, M.MORAN, E.2011-04-10T11:11:11Z2011-04-10T11:11:11Z2004-04-2920042015-03-30T11:11:11Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlePhotogrammetric Engineering & Remote Sensing, v. 70, n. 6, p. 723-731, jun. 2004.http://www.alice.cnptia.embrapa.br/alice/handle/doc/17039enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2017-08-16T00:53:02Zoai:www.alice.cnptia.embrapa.br:doc/17039Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542017-08-16T00:53:02falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542017-08-16T00:53:02Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
Comparison of land-cover classification methods in the Brazilian Amazon Basin. |
title |
Comparison of land-cover classification methods in the Brazilian Amazon Basin. |
spellingShingle |
Comparison of land-cover classification methods in the Brazilian Amazon Basin. LU, D. Mapeamento Amazonia brasileira Amazonas Bacia Hidrográfica Floresta Tropical Úmida Satélite |
title_short |
Comparison of land-cover classification methods in the Brazilian Amazon Basin. |
title_full |
Comparison of land-cover classification methods in the Brazilian Amazon Basin. |
title_fullStr |
Comparison of land-cover classification methods in the Brazilian Amazon Basin. |
title_full_unstemmed |
Comparison of land-cover classification methods in the Brazilian Amazon Basin. |
title_sort |
Comparison of land-cover classification methods in the Brazilian Amazon Basin. |
author |
LU, D. |
author_facet |
LU, D. MAUSEL, P. BATISTELLA, M. MORAN, E. |
author_role |
author |
author2 |
MAUSEL, P. BATISTELLA, M. MORAN, E. |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
1-2 e 4: Indiana University; 3: Embrapa Monitoramento por Satélite. |
dc.contributor.author.fl_str_mv |
LU, D. MAUSEL, P. BATISTELLA, M. MORAN, E. |
dc.subject.por.fl_str_mv |
Mapeamento Amazonia brasileira Amazonas Bacia Hidrográfica Floresta Tropical Úmida Satélite |
topic |
Mapeamento Amazonia brasileira Amazonas Bacia Hidrográfica Floresta Tropical Úmida Satélite |
description |
Four distinctly different classifiers were used to analyze multispectral data. Which of these classifiers is most suitable for a specific study area is not always clear. This paper provides a comparison of minimum-distance classifier (MDC), maximumlikelihood classifier (MLC), extraction and classification of homogeneous objects (ECHO), and decision-tree classifier based on linear spectral mixture analysis (DTC-LSMA). Each of the classifiers used both Landsat Thematic Mapper data and identical field-based training sample datasets in a western Brazilian Amazon study area. Seven land-cover classes? mature forest, advanced secondary succession, initial secondary succession, pasture lands, agricultural lands, bare lands, and water?were classified. Classification results indicate that the DTC-LSMA and ECHO classifiers were more accurate than were the MDC and MLC. The overall accuracy of the DTCLSMA approach was 86 percent with a 0.82 kappa coefficient and ECHO had an accuracy of 83 percent with a 0.79 kappa coefficient. The accuracy of the other classifiers ranged from 77 to 80 percent with kappa coefficients from 0.72 to 0.75. |
publishDate |
2004 |
dc.date.none.fl_str_mv |
2004-04-29 2004 2011-04-10T11:11:11Z 2011-04-10T11:11:11Z 2015-03-30T11:11:11Z |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Photogrammetric Engineering & Remote Sensing, v. 70, n. 6, p. 723-731, jun. 2004. http://www.alice.cnptia.embrapa.br/alice/handle/doc/17039 |
identifier_str_mv |
Photogrammetric Engineering & Remote Sensing, v. 70, n. 6, p. 723-731, jun. 2004. |
url |
http://www.alice.cnptia.embrapa.br/alice/handle/doc/17039 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
collection |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository.name.fl_str_mv |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
cg-riaa@embrapa.br |
_version_ |
1794503393075527680 |