Multiple-trait model through Bayesian inference applied to Jatropha curcas breeding for bioenergy.

Detalhes bibliográficos
Autor(a) principal: PEIXOTO, M. A.
Data de Publicação: 2021
Outros Autores: EVANGELISTA, J. S. P. C., COELHO, I. F, ALVES, R. A., LAVIOLA, B. G., SILVA, F. F. e, RESENDE, M. D. V. de, BHERING, L. L.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1132550
https://doi.org/10.1371/journal.pone.0247775
Resumo: Multiple-trait model tends to be the best alternative for the analysis of repeated measures, since they consider the genetic and residual correlations between measures and improve the selective accuracy. Thus, the objective of this study was to propose a multiple-trait Bayesian model for repeated measures analysis in Jatropha curcas breeding for bioenergy. To this end, the grain yield trait of 730 individuals of 73 half-sib families was evaluated over six harvests. The Markov Chain Monte Carlo algorithm was used to estimate genetic parameters and genetic values. Genetic correlation between pairs of measures were estimated and four selective intensities (27.4%, 20.5%, 13.7%, and 6.9%) were used to compute the selection gains. The full model was selected based on deviance information criterion. Genetic correlations of low, moderate, and high magnitude were observed between pairs of harvests. Bayesian analyses provide robust inference of genetic parameters and genetic values, with high selective accuracies. In summary, the multiple-trait Bayesian model allowed the reliable selection of superior Jatropha curcas progenies. Therefore, we recommend this model to genetic evaluation of Jatropha curcas genotypes, and its generalization, in other perennials.
id EMBR_212979f00ed04199129bf8179b3a5b33
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/1132550
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling Multiple-trait model through Bayesian inference applied to Jatropha curcas breeding for bioenergy.BioenergiaBioenergyBiofuelsVegetable oilPetroleumGenetic polymorphismMultiple-trait model tends to be the best alternative for the analysis of repeated measures, since they consider the genetic and residual correlations between measures and improve the selective accuracy. Thus, the objective of this study was to propose a multiple-trait Bayesian model for repeated measures analysis in Jatropha curcas breeding for bioenergy. To this end, the grain yield trait of 730 individuals of 73 half-sib families was evaluated over six harvests. The Markov Chain Monte Carlo algorithm was used to estimate genetic parameters and genetic values. Genetic correlation between pairs of measures were estimated and four selective intensities (27.4%, 20.5%, 13.7%, and 6.9%) were used to compute the selection gains. The full model was selected based on deviance information criterion. Genetic correlations of low, moderate, and high magnitude were observed between pairs of harvests. Bayesian analyses provide robust inference of genetic parameters and genetic values, with high selective accuracies. In summary, the multiple-trait Bayesian model allowed the reliable selection of superior Jatropha curcas progenies. Therefore, we recommend this model to genetic evaluation of Jatropha curcas genotypes, and its generalization, in other perennials.MARCO ANTÔNIO PEIXOTO, Universidade Federal de Viçosa; JENIFFER SANTANA PINTO COELHO EVANGELISTA, Universidade Federal de Viçosa; IGOR FERREIRA COELHO, Universidade Federal de Viçosa; RODRIGO SILVA ALVES, Universidade Federal de Viçosa; BRUNO GALVEAS LAVIOLA, CNPAE; FABYANO FONSECA E SILVA, Universidade Federal de Viçosa; MARCOS DEON VILELA DE RESENDE, CNPCa; LEONARDO LOPES BHERING, Universidade Federal de Viçosa.PEIXOTO, M. A.EVANGELISTA, J. S. P. C.COELHO, I. FALVES, R. A.LAVIOLA, B. G.SILVA, F. F. eRESENDE, M. D. V. deBHERING, L. L.2021-06-25T02:21:21Z2021-06-25T02:21:21Z2021-06-242021info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlePLOS ONE , v. 16, n. 3, e0247775, Mar. 2021.1932-6203http://www.alice.cnptia.embrapa.br/alice/handle/doc/1132550https://doi.org/10.1371/journal.pone.0247775enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2021-06-25T02:21:31Zoai:www.alice.cnptia.embrapa.br:doc/1132550Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542021-06-25T02:21:31falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542021-06-25T02:21:31Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Multiple-trait model through Bayesian inference applied to Jatropha curcas breeding for bioenergy.
title Multiple-trait model through Bayesian inference applied to Jatropha curcas breeding for bioenergy.
spellingShingle Multiple-trait model through Bayesian inference applied to Jatropha curcas breeding for bioenergy.
PEIXOTO, M. A.
Bioenergia
Bioenergy
Biofuels
Vegetable oil
Petroleum
Genetic polymorphism
title_short Multiple-trait model through Bayesian inference applied to Jatropha curcas breeding for bioenergy.
title_full Multiple-trait model through Bayesian inference applied to Jatropha curcas breeding for bioenergy.
title_fullStr Multiple-trait model through Bayesian inference applied to Jatropha curcas breeding for bioenergy.
title_full_unstemmed Multiple-trait model through Bayesian inference applied to Jatropha curcas breeding for bioenergy.
title_sort Multiple-trait model through Bayesian inference applied to Jatropha curcas breeding for bioenergy.
author PEIXOTO, M. A.
author_facet PEIXOTO, M. A.
EVANGELISTA, J. S. P. C.
COELHO, I. F
ALVES, R. A.
LAVIOLA, B. G.
SILVA, F. F. e
RESENDE, M. D. V. de
BHERING, L. L.
author_role author
author2 EVANGELISTA, J. S. P. C.
COELHO, I. F
ALVES, R. A.
LAVIOLA, B. G.
SILVA, F. F. e
RESENDE, M. D. V. de
BHERING, L. L.
author2_role author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv MARCO ANTÔNIO PEIXOTO, Universidade Federal de Viçosa; JENIFFER SANTANA PINTO COELHO EVANGELISTA, Universidade Federal de Viçosa; IGOR FERREIRA COELHO, Universidade Federal de Viçosa; RODRIGO SILVA ALVES, Universidade Federal de Viçosa; BRUNO GALVEAS LAVIOLA, CNPAE; FABYANO FONSECA E SILVA, Universidade Federal de Viçosa; MARCOS DEON VILELA DE RESENDE, CNPCa; LEONARDO LOPES BHERING, Universidade Federal de Viçosa.
dc.contributor.author.fl_str_mv PEIXOTO, M. A.
EVANGELISTA, J. S. P. C.
COELHO, I. F
ALVES, R. A.
LAVIOLA, B. G.
SILVA, F. F. e
RESENDE, M. D. V. de
BHERING, L. L.
dc.subject.por.fl_str_mv Bioenergia
Bioenergy
Biofuels
Vegetable oil
Petroleum
Genetic polymorphism
topic Bioenergia
Bioenergy
Biofuels
Vegetable oil
Petroleum
Genetic polymorphism
description Multiple-trait model tends to be the best alternative for the analysis of repeated measures, since they consider the genetic and residual correlations between measures and improve the selective accuracy. Thus, the objective of this study was to propose a multiple-trait Bayesian model for repeated measures analysis in Jatropha curcas breeding for bioenergy. To this end, the grain yield trait of 730 individuals of 73 half-sib families was evaluated over six harvests. The Markov Chain Monte Carlo algorithm was used to estimate genetic parameters and genetic values. Genetic correlation between pairs of measures were estimated and four selective intensities (27.4%, 20.5%, 13.7%, and 6.9%) were used to compute the selection gains. The full model was selected based on deviance information criterion. Genetic correlations of low, moderate, and high magnitude were observed between pairs of harvests. Bayesian analyses provide robust inference of genetic parameters and genetic values, with high selective accuracies. In summary, the multiple-trait Bayesian model allowed the reliable selection of superior Jatropha curcas progenies. Therefore, we recommend this model to genetic evaluation of Jatropha curcas genotypes, and its generalization, in other perennials.
publishDate 2021
dc.date.none.fl_str_mv 2021-06-25T02:21:21Z
2021-06-25T02:21:21Z
2021-06-24
2021
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv PLOS ONE , v. 16, n. 3, e0247775, Mar. 2021.
1932-6203
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1132550
https://doi.org/10.1371/journal.pone.0247775
identifier_str_mv PLOS ONE , v. 16, n. 3, e0247775, Mar. 2021.
1932-6203
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/1132550
https://doi.org/10.1371/journal.pone.0247775
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1794503506538790912