Multiple-trait model through Bayesian inference applied to Jatropha curcas breeding for bioenergy.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
Texto Completo: | http://www.alice.cnptia.embrapa.br/alice/handle/doc/1132550 https://doi.org/10.1371/journal.pone.0247775 |
Resumo: | Multiple-trait model tends to be the best alternative for the analysis of repeated measures, since they consider the genetic and residual correlations between measures and improve the selective accuracy. Thus, the objective of this study was to propose a multiple-trait Bayesian model for repeated measures analysis in Jatropha curcas breeding for bioenergy. To this end, the grain yield trait of 730 individuals of 73 half-sib families was evaluated over six harvests. The Markov Chain Monte Carlo algorithm was used to estimate genetic parameters and genetic values. Genetic correlation between pairs of measures were estimated and four selective intensities (27.4%, 20.5%, 13.7%, and 6.9%) were used to compute the selection gains. The full model was selected based on deviance information criterion. Genetic correlations of low, moderate, and high magnitude were observed between pairs of harvests. Bayesian analyses provide robust inference of genetic parameters and genetic values, with high selective accuracies. In summary, the multiple-trait Bayesian model allowed the reliable selection of superior Jatropha curcas progenies. Therefore, we recommend this model to genetic evaluation of Jatropha curcas genotypes, and its generalization, in other perennials. |
id |
EMBR_212979f00ed04199129bf8179b3a5b33 |
---|---|
oai_identifier_str |
oai:www.alice.cnptia.embrapa.br:doc/1132550 |
network_acronym_str |
EMBR |
network_name_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository_id_str |
2154 |
spelling |
Multiple-trait model through Bayesian inference applied to Jatropha curcas breeding for bioenergy.BioenergiaBioenergyBiofuelsVegetable oilPetroleumGenetic polymorphismMultiple-trait model tends to be the best alternative for the analysis of repeated measures, since they consider the genetic and residual correlations between measures and improve the selective accuracy. Thus, the objective of this study was to propose a multiple-trait Bayesian model for repeated measures analysis in Jatropha curcas breeding for bioenergy. To this end, the grain yield trait of 730 individuals of 73 half-sib families was evaluated over six harvests. The Markov Chain Monte Carlo algorithm was used to estimate genetic parameters and genetic values. Genetic correlation between pairs of measures were estimated and four selective intensities (27.4%, 20.5%, 13.7%, and 6.9%) were used to compute the selection gains. The full model was selected based on deviance information criterion. Genetic correlations of low, moderate, and high magnitude were observed between pairs of harvests. Bayesian analyses provide robust inference of genetic parameters and genetic values, with high selective accuracies. In summary, the multiple-trait Bayesian model allowed the reliable selection of superior Jatropha curcas progenies. Therefore, we recommend this model to genetic evaluation of Jatropha curcas genotypes, and its generalization, in other perennials.MARCO ANTÔNIO PEIXOTO, Universidade Federal de Viçosa; JENIFFER SANTANA PINTO COELHO EVANGELISTA, Universidade Federal de Viçosa; IGOR FERREIRA COELHO, Universidade Federal de Viçosa; RODRIGO SILVA ALVES, Universidade Federal de Viçosa; BRUNO GALVEAS LAVIOLA, CNPAE; FABYANO FONSECA E SILVA, Universidade Federal de Viçosa; MARCOS DEON VILELA DE RESENDE, CNPCa; LEONARDO LOPES BHERING, Universidade Federal de Viçosa.PEIXOTO, M. A.EVANGELISTA, J. S. P. C.COELHO, I. FALVES, R. A.LAVIOLA, B. G.SILVA, F. F. eRESENDE, M. D. V. deBHERING, L. L.2021-06-25T02:21:21Z2021-06-25T02:21:21Z2021-06-242021info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlePLOS ONE , v. 16, n. 3, e0247775, Mar. 2021.1932-6203http://www.alice.cnptia.embrapa.br/alice/handle/doc/1132550https://doi.org/10.1371/journal.pone.0247775enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2021-06-25T02:21:31Zoai:www.alice.cnptia.embrapa.br:doc/1132550Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542021-06-25T02:21:31falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542021-06-25T02:21:31Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
Multiple-trait model through Bayesian inference applied to Jatropha curcas breeding for bioenergy. |
title |
Multiple-trait model through Bayesian inference applied to Jatropha curcas breeding for bioenergy. |
spellingShingle |
Multiple-trait model through Bayesian inference applied to Jatropha curcas breeding for bioenergy. PEIXOTO, M. A. Bioenergia Bioenergy Biofuels Vegetable oil Petroleum Genetic polymorphism |
title_short |
Multiple-trait model through Bayesian inference applied to Jatropha curcas breeding for bioenergy. |
title_full |
Multiple-trait model through Bayesian inference applied to Jatropha curcas breeding for bioenergy. |
title_fullStr |
Multiple-trait model through Bayesian inference applied to Jatropha curcas breeding for bioenergy. |
title_full_unstemmed |
Multiple-trait model through Bayesian inference applied to Jatropha curcas breeding for bioenergy. |
title_sort |
Multiple-trait model through Bayesian inference applied to Jatropha curcas breeding for bioenergy. |
author |
PEIXOTO, M. A. |
author_facet |
PEIXOTO, M. A. EVANGELISTA, J. S. P. C. COELHO, I. F ALVES, R. A. LAVIOLA, B. G. SILVA, F. F. e RESENDE, M. D. V. de BHERING, L. L. |
author_role |
author |
author2 |
EVANGELISTA, J. S. P. C. COELHO, I. F ALVES, R. A. LAVIOLA, B. G. SILVA, F. F. e RESENDE, M. D. V. de BHERING, L. L. |
author2_role |
author author author author author author author |
dc.contributor.none.fl_str_mv |
MARCO ANTÔNIO PEIXOTO, Universidade Federal de Viçosa; JENIFFER SANTANA PINTO COELHO EVANGELISTA, Universidade Federal de Viçosa; IGOR FERREIRA COELHO, Universidade Federal de Viçosa; RODRIGO SILVA ALVES, Universidade Federal de Viçosa; BRUNO GALVEAS LAVIOLA, CNPAE; FABYANO FONSECA E SILVA, Universidade Federal de Viçosa; MARCOS DEON VILELA DE RESENDE, CNPCa; LEONARDO LOPES BHERING, Universidade Federal de Viçosa. |
dc.contributor.author.fl_str_mv |
PEIXOTO, M. A. EVANGELISTA, J. S. P. C. COELHO, I. F ALVES, R. A. LAVIOLA, B. G. SILVA, F. F. e RESENDE, M. D. V. de BHERING, L. L. |
dc.subject.por.fl_str_mv |
Bioenergia Bioenergy Biofuels Vegetable oil Petroleum Genetic polymorphism |
topic |
Bioenergia Bioenergy Biofuels Vegetable oil Petroleum Genetic polymorphism |
description |
Multiple-trait model tends to be the best alternative for the analysis of repeated measures, since they consider the genetic and residual correlations between measures and improve the selective accuracy. Thus, the objective of this study was to propose a multiple-trait Bayesian model for repeated measures analysis in Jatropha curcas breeding for bioenergy. To this end, the grain yield trait of 730 individuals of 73 half-sib families was evaluated over six harvests. The Markov Chain Monte Carlo algorithm was used to estimate genetic parameters and genetic values. Genetic correlation between pairs of measures were estimated and four selective intensities (27.4%, 20.5%, 13.7%, and 6.9%) were used to compute the selection gains. The full model was selected based on deviance information criterion. Genetic correlations of low, moderate, and high magnitude were observed between pairs of harvests. Bayesian analyses provide robust inference of genetic parameters and genetic values, with high selective accuracies. In summary, the multiple-trait Bayesian model allowed the reliable selection of superior Jatropha curcas progenies. Therefore, we recommend this model to genetic evaluation of Jatropha curcas genotypes, and its generalization, in other perennials. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-06-25T02:21:21Z 2021-06-25T02:21:21Z 2021-06-24 2021 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
PLOS ONE , v. 16, n. 3, e0247775, Mar. 2021. 1932-6203 http://www.alice.cnptia.embrapa.br/alice/handle/doc/1132550 https://doi.org/10.1371/journal.pone.0247775 |
identifier_str_mv |
PLOS ONE , v. 16, n. 3, e0247775, Mar. 2021. 1932-6203 |
url |
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1132550 https://doi.org/10.1371/journal.pone.0247775 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
collection |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository.name.fl_str_mv |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
cg-riaa@embrapa.br |
_version_ |
1794503506538790912 |