Multi-trait multi-environment models in the genetic selection of segregating soybean progeny.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
Texto Completo: | http://www.alice.cnptia.embrapa.br/alice/handle/doc/1110400 |
Resumo: | At present, single-trait best linear unbiased prediction (BLUP) is the standard method for genetic selection in soybean. However, when genetic selection is performed based on two or more genetically correlated traits and these are analyzed individually, selection bias may arise. Under these conditions, considering the correlation structure between the evaluated traits may provide more-accurate genetic estimates for the evaluated parameters, even under environmental influences. The present study was thus developed to examine the efficiency and applicability of multi-trait multi-environment (MTME) models by the residual maximum likelihood (REML/BLUP) and Bayesian approaches in the genetic selection of segregating soybean progeny. The study involved data pertaining to 203 soybean F2:4 progeny assessed in two environments for the following traits: number of days to maturity (DM), 100-seed weight (SW), and average seed yield per plot (SY). Variance components and genetic and non-genetic parameters were estimated via the REML/BLUP and Bayesian methods. The variance components estimated and the breeding values and genetic gains predicted with selection through the Bayesian procedure were similar to those obtained by REML/BLUP. The frequentist and Bayesian MTME models provided higher estimates of broad-sense heritability per plot (or heritability of total effects of progeny; h2 prog) and mean accuracy of progeny than their respective single-trait versions. Bayesian analysis provided the credibility intervals for the estimates of h2 prog. Therefore, MTME led to greater predicted gains from selection. On this basis, this procedure can be efficiently applied in the genetic selection of segregating soybean progeny. |
id |
EMBR_256b21fd107c774a463cb713760e90c4 |
---|---|
oai_identifier_str |
oai:www.alice.cnptia.embrapa.br:doc/1110400 |
network_acronym_str |
EMBR |
network_name_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository_id_str |
2154 |
spelling |
Multi-trait multi-environment models in the genetic selection of segregating soybean progeny.Bayesian-inferenceGenomic selectionBreeding valuesSeed proteinMixed modelsInferência BayesianModelo mistoSeleção genômicaSojaSoybeansAgronomic traitsPredictionAt present, single-trait best linear unbiased prediction (BLUP) is the standard method for genetic selection in soybean. However, when genetic selection is performed based on two or more genetically correlated traits and these are analyzed individually, selection bias may arise. Under these conditions, considering the correlation structure between the evaluated traits may provide more-accurate genetic estimates for the evaluated parameters, even under environmental influences. The present study was thus developed to examine the efficiency and applicability of multi-trait multi-environment (MTME) models by the residual maximum likelihood (REML/BLUP) and Bayesian approaches in the genetic selection of segregating soybean progeny. The study involved data pertaining to 203 soybean F2:4 progeny assessed in two environments for the following traits: number of days to maturity (DM), 100-seed weight (SW), and average seed yield per plot (SY). Variance components and genetic and non-genetic parameters were estimated via the REML/BLUP and Bayesian methods. The variance components estimated and the breeding values and genetic gains predicted with selection through the Bayesian procedure were similar to those obtained by REML/BLUP. The frequentist and Bayesian MTME models provided higher estimates of broad-sense heritability per plot (or heritability of total effects of progeny; h2 prog) and mean accuracy of progeny than their respective single-trait versions. Bayesian analysis provided the credibility intervals for the estimates of h2 prog. Therefore, MTME led to greater predicted gains from selection. On this basis, this procedure can be efficiently applied in the genetic selection of segregating soybean progeny.Leonardo Volpato, Universidade Federal de Viçosa; Rodrigo Silva Alves, Universidade Federal de Viçosa; Paulo Eduardo Teodoro, Universidade Federal de Mato Grosso do Sul; MARCOS DEON VILELA DE RESENDE, CNPF; Moysés Nascimento, Universidade Federal de Viçosa; Ana Carolina Campana Nascimento, Universidade Federal de Viçosa; Willian Hytalo Ludke, Universidade Federal de Viçosa; Felipe Lopes da Silva, Universidade Federal de Viçosa; Aluízio Borém, Universidade Federal de Viçosa.VOLPATO, L.ALVES, R. S.TEODORO, P. E.RESENDE, M. D. V. deNASCIMENTO, M.NASCIMENTO, A. C. C.LUDKE, W. H.SILVA, F. L. daBORÉM, A.2019-07-06T01:05:45Z2019-07-06T01:05:45Z2019-07-0520192019-10-30T11:11:11Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlePLoS ONE, v. 14, n. 4, e0215315, Apr. 2019. 22 p.http://www.alice.cnptia.embrapa.br/alice/handle/doc/111040010.1371/journal.pone.0215315enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2019-07-06T01:05:52Zoai:www.alice.cnptia.embrapa.br:doc/1110400Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542019-07-06T01:05:52falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542019-07-06T01:05:52Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
Multi-trait multi-environment models in the genetic selection of segregating soybean progeny. |
title |
Multi-trait multi-environment models in the genetic selection of segregating soybean progeny. |
spellingShingle |
Multi-trait multi-environment models in the genetic selection of segregating soybean progeny. VOLPATO, L. Bayesian-inference Genomic selection Breeding values Seed protein Mixed models Inferência Bayesian Modelo misto Seleção genômica Soja Soybeans Agronomic traits Prediction |
title_short |
Multi-trait multi-environment models in the genetic selection of segregating soybean progeny. |
title_full |
Multi-trait multi-environment models in the genetic selection of segregating soybean progeny. |
title_fullStr |
Multi-trait multi-environment models in the genetic selection of segregating soybean progeny. |
title_full_unstemmed |
Multi-trait multi-environment models in the genetic selection of segregating soybean progeny. |
title_sort |
Multi-trait multi-environment models in the genetic selection of segregating soybean progeny. |
author |
VOLPATO, L. |
author_facet |
VOLPATO, L. ALVES, R. S. TEODORO, P. E. RESENDE, M. D. V. de NASCIMENTO, M. NASCIMENTO, A. C. C. LUDKE, W. H. SILVA, F. L. da BORÉM, A. |
author_role |
author |
author2 |
ALVES, R. S. TEODORO, P. E. RESENDE, M. D. V. de NASCIMENTO, M. NASCIMENTO, A. C. C. LUDKE, W. H. SILVA, F. L. da BORÉM, A. |
author2_role |
author author author author author author author author |
dc.contributor.none.fl_str_mv |
Leonardo Volpato, Universidade Federal de Viçosa; Rodrigo Silva Alves, Universidade Federal de Viçosa; Paulo Eduardo Teodoro, Universidade Federal de Mato Grosso do Sul; MARCOS DEON VILELA DE RESENDE, CNPF; Moysés Nascimento, Universidade Federal de Viçosa; Ana Carolina Campana Nascimento, Universidade Federal de Viçosa; Willian Hytalo Ludke, Universidade Federal de Viçosa; Felipe Lopes da Silva, Universidade Federal de Viçosa; Aluízio Borém, Universidade Federal de Viçosa. |
dc.contributor.author.fl_str_mv |
VOLPATO, L. ALVES, R. S. TEODORO, P. E. RESENDE, M. D. V. de NASCIMENTO, M. NASCIMENTO, A. C. C. LUDKE, W. H. SILVA, F. L. da BORÉM, A. |
dc.subject.por.fl_str_mv |
Bayesian-inference Genomic selection Breeding values Seed protein Mixed models Inferência Bayesian Modelo misto Seleção genômica Soja Soybeans Agronomic traits Prediction |
topic |
Bayesian-inference Genomic selection Breeding values Seed protein Mixed models Inferência Bayesian Modelo misto Seleção genômica Soja Soybeans Agronomic traits Prediction |
description |
At present, single-trait best linear unbiased prediction (BLUP) is the standard method for genetic selection in soybean. However, when genetic selection is performed based on two or more genetically correlated traits and these are analyzed individually, selection bias may arise. Under these conditions, considering the correlation structure between the evaluated traits may provide more-accurate genetic estimates for the evaluated parameters, even under environmental influences. The present study was thus developed to examine the efficiency and applicability of multi-trait multi-environment (MTME) models by the residual maximum likelihood (REML/BLUP) and Bayesian approaches in the genetic selection of segregating soybean progeny. The study involved data pertaining to 203 soybean F2:4 progeny assessed in two environments for the following traits: number of days to maturity (DM), 100-seed weight (SW), and average seed yield per plot (SY). Variance components and genetic and non-genetic parameters were estimated via the REML/BLUP and Bayesian methods. The variance components estimated and the breeding values and genetic gains predicted with selection through the Bayesian procedure were similar to those obtained by REML/BLUP. The frequentist and Bayesian MTME models provided higher estimates of broad-sense heritability per plot (or heritability of total effects of progeny; h2 prog) and mean accuracy of progeny than their respective single-trait versions. Bayesian analysis provided the credibility intervals for the estimates of h2 prog. Therefore, MTME led to greater predicted gains from selection. On this basis, this procedure can be efficiently applied in the genetic selection of segregating soybean progeny. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-07-06T01:05:45Z 2019-07-06T01:05:45Z 2019-07-05 2019 2019-10-30T11:11:11Z |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
PLoS ONE, v. 14, n. 4, e0215315, Apr. 2019. 22 p. http://www.alice.cnptia.embrapa.br/alice/handle/doc/1110400 10.1371/journal.pone.0215315 |
identifier_str_mv |
PLoS ONE, v. 14, n. 4, e0215315, Apr. 2019. 22 p. 10.1371/journal.pone.0215315 |
url |
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1110400 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
collection |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository.name.fl_str_mv |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
cg-riaa@embrapa.br |
_version_ |
1794503476619771904 |