Multi-trait multi-environment models in the genetic selection of segregating soybean progeny.

Detalhes bibliográficos
Autor(a) principal: VOLPATO, L.
Data de Publicação: 2019
Outros Autores: ALVES, R. S., TEODORO, P. E., RESENDE, M. D. V. de, NASCIMENTO, M., NASCIMENTO, A. C. C., LUDKE, W. H., SILVA, F. L. da, BORÉM, A.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1110400
Resumo: At present, single-trait best linear unbiased prediction (BLUP) is the standard method for genetic selection in soybean. However, when genetic selection is performed based on two or more genetically correlated traits and these are analyzed individually, selection bias may arise. Under these conditions, considering the correlation structure between the evaluated traits may provide more-accurate genetic estimates for the evaluated parameters, even under environmental influences. The present study was thus developed to examine the efficiency and applicability of multi-trait multi-environment (MTME) models by the residual maximum likelihood (REML/BLUP) and Bayesian approaches in the genetic selection of segregating soybean progeny. The study involved data pertaining to 203 soybean F2:4 progeny assessed in two environments for the following traits: number of days to maturity (DM), 100-seed weight (SW), and average seed yield per plot (SY). Variance components and genetic and non-genetic parameters were estimated via the REML/BLUP and Bayesian methods. The variance components estimated and the breeding values and genetic gains predicted with selection through the Bayesian procedure were similar to those obtained by REML/BLUP. The frequentist and Bayesian MTME models provided higher estimates of broad-sense heritability per plot (or heritability of total effects of progeny; h2 prog) and mean accuracy of progeny than their respective single-trait versions. Bayesian analysis provided the credibility intervals for the estimates of h2 prog. Therefore, MTME led to greater predicted gains from selection. On this basis, this procedure can be efficiently applied in the genetic selection of segregating soybean progeny.
id EMBR_256b21fd107c774a463cb713760e90c4
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/1110400
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling Multi-trait multi-environment models in the genetic selection of segregating soybean progeny.Bayesian-inferenceGenomic selectionBreeding valuesSeed proteinMixed modelsInferência BayesianModelo mistoSeleção genômicaSojaSoybeansAgronomic traitsPredictionAt present, single-trait best linear unbiased prediction (BLUP) is the standard method for genetic selection in soybean. However, when genetic selection is performed based on two or more genetically correlated traits and these are analyzed individually, selection bias may arise. Under these conditions, considering the correlation structure between the evaluated traits may provide more-accurate genetic estimates for the evaluated parameters, even under environmental influences. The present study was thus developed to examine the efficiency and applicability of multi-trait multi-environment (MTME) models by the residual maximum likelihood (REML/BLUP) and Bayesian approaches in the genetic selection of segregating soybean progeny. The study involved data pertaining to 203 soybean F2:4 progeny assessed in two environments for the following traits: number of days to maturity (DM), 100-seed weight (SW), and average seed yield per plot (SY). Variance components and genetic and non-genetic parameters were estimated via the REML/BLUP and Bayesian methods. The variance components estimated and the breeding values and genetic gains predicted with selection through the Bayesian procedure were similar to those obtained by REML/BLUP. The frequentist and Bayesian MTME models provided higher estimates of broad-sense heritability per plot (or heritability of total effects of progeny; h2 prog) and mean accuracy of progeny than their respective single-trait versions. Bayesian analysis provided the credibility intervals for the estimates of h2 prog. Therefore, MTME led to greater predicted gains from selection. On this basis, this procedure can be efficiently applied in the genetic selection of segregating soybean progeny.Leonardo Volpato, Universidade Federal de Viçosa; Rodrigo Silva Alves, Universidade Federal de Viçosa; Paulo Eduardo Teodoro, Universidade Federal de Mato Grosso do Sul; MARCOS DEON VILELA DE RESENDE, CNPF; Moysés Nascimento, Universidade Federal de Viçosa; Ana Carolina Campana Nascimento, Universidade Federal de Viçosa; Willian Hytalo Ludke, Universidade Federal de Viçosa; Felipe Lopes da Silva, Universidade Federal de Viçosa; Aluízio Borém, Universidade Federal de Viçosa.VOLPATO, L.ALVES, R. S.TEODORO, P. E.RESENDE, M. D. V. deNASCIMENTO, M.NASCIMENTO, A. C. C.LUDKE, W. H.SILVA, F. L. daBORÉM, A.2019-07-06T01:05:45Z2019-07-06T01:05:45Z2019-07-0520192019-10-30T11:11:11Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlePLoS ONE, v. 14, n. 4, e0215315, Apr. 2019. 22 p.http://www.alice.cnptia.embrapa.br/alice/handle/doc/111040010.1371/journal.pone.0215315enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2019-07-06T01:05:52Zoai:www.alice.cnptia.embrapa.br:doc/1110400Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542019-07-06T01:05:52falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542019-07-06T01:05:52Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Multi-trait multi-environment models in the genetic selection of segregating soybean progeny.
title Multi-trait multi-environment models in the genetic selection of segregating soybean progeny.
spellingShingle Multi-trait multi-environment models in the genetic selection of segregating soybean progeny.
VOLPATO, L.
Bayesian-inference
Genomic selection
Breeding values
Seed protein
Mixed models
Inferência Bayesian
Modelo misto
Seleção genômica
Soja
Soybeans
Agronomic traits
Prediction
title_short Multi-trait multi-environment models in the genetic selection of segregating soybean progeny.
title_full Multi-trait multi-environment models in the genetic selection of segregating soybean progeny.
title_fullStr Multi-trait multi-environment models in the genetic selection of segregating soybean progeny.
title_full_unstemmed Multi-trait multi-environment models in the genetic selection of segregating soybean progeny.
title_sort Multi-trait multi-environment models in the genetic selection of segregating soybean progeny.
author VOLPATO, L.
author_facet VOLPATO, L.
ALVES, R. S.
TEODORO, P. E.
RESENDE, M. D. V. de
NASCIMENTO, M.
NASCIMENTO, A. C. C.
LUDKE, W. H.
SILVA, F. L. da
BORÉM, A.
author_role author
author2 ALVES, R. S.
TEODORO, P. E.
RESENDE, M. D. V. de
NASCIMENTO, M.
NASCIMENTO, A. C. C.
LUDKE, W. H.
SILVA, F. L. da
BORÉM, A.
author2_role author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Leonardo Volpato, Universidade Federal de Viçosa; Rodrigo Silva Alves, Universidade Federal de Viçosa; Paulo Eduardo Teodoro, Universidade Federal de Mato Grosso do Sul; MARCOS DEON VILELA DE RESENDE, CNPF; Moysés Nascimento, Universidade Federal de Viçosa; Ana Carolina Campana Nascimento, Universidade Federal de Viçosa; Willian Hytalo Ludke, Universidade Federal de Viçosa; Felipe Lopes da Silva, Universidade Federal de Viçosa; Aluízio Borém, Universidade Federal de Viçosa.
dc.contributor.author.fl_str_mv VOLPATO, L.
ALVES, R. S.
TEODORO, P. E.
RESENDE, M. D. V. de
NASCIMENTO, M.
NASCIMENTO, A. C. C.
LUDKE, W. H.
SILVA, F. L. da
BORÉM, A.
dc.subject.por.fl_str_mv Bayesian-inference
Genomic selection
Breeding values
Seed protein
Mixed models
Inferência Bayesian
Modelo misto
Seleção genômica
Soja
Soybeans
Agronomic traits
Prediction
topic Bayesian-inference
Genomic selection
Breeding values
Seed protein
Mixed models
Inferência Bayesian
Modelo misto
Seleção genômica
Soja
Soybeans
Agronomic traits
Prediction
description At present, single-trait best linear unbiased prediction (BLUP) is the standard method for genetic selection in soybean. However, when genetic selection is performed based on two or more genetically correlated traits and these are analyzed individually, selection bias may arise. Under these conditions, considering the correlation structure between the evaluated traits may provide more-accurate genetic estimates for the evaluated parameters, even under environmental influences. The present study was thus developed to examine the efficiency and applicability of multi-trait multi-environment (MTME) models by the residual maximum likelihood (REML/BLUP) and Bayesian approaches in the genetic selection of segregating soybean progeny. The study involved data pertaining to 203 soybean F2:4 progeny assessed in two environments for the following traits: number of days to maturity (DM), 100-seed weight (SW), and average seed yield per plot (SY). Variance components and genetic and non-genetic parameters were estimated via the REML/BLUP and Bayesian methods. The variance components estimated and the breeding values and genetic gains predicted with selection through the Bayesian procedure were similar to those obtained by REML/BLUP. The frequentist and Bayesian MTME models provided higher estimates of broad-sense heritability per plot (or heritability of total effects of progeny; h2 prog) and mean accuracy of progeny than their respective single-trait versions. Bayesian analysis provided the credibility intervals for the estimates of h2 prog. Therefore, MTME led to greater predicted gains from selection. On this basis, this procedure can be efficiently applied in the genetic selection of segregating soybean progeny.
publishDate 2019
dc.date.none.fl_str_mv 2019-07-06T01:05:45Z
2019-07-06T01:05:45Z
2019-07-05
2019
2019-10-30T11:11:11Z
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv PLoS ONE, v. 14, n. 4, e0215315, Apr. 2019. 22 p.
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1110400
10.1371/journal.pone.0215315
identifier_str_mv PLoS ONE, v. 14, n. 4, e0215315, Apr. 2019. 22 p.
10.1371/journal.pone.0215315
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/1110400
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1794503476619771904