Mapping productivity and essential biophysical parameters of cultivated tropical grasslands from sentinel-2 imagery.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
Texto Completo: | http://www.alice.cnptia.embrapa.br/alice/handle/doc/1124094 https://doi.org/10.3390/agronomy10050711 |
Resumo: | Abstract: Nitrogen (N) is the main nutrient element that maintains productivity in forages; it is inextricably linked to dry matter increase and plant support capacity. In recent years, high spectral and spatial resolution remote sensors, e.g., the European Space Agency (ESA)?s Sentinel satellite missions, have become freely available for agricultural science, and have proven to be powerful monitoring tools. The use of vegetation indices has been essential for crop monitoring and biomass estimation models. The objective of this work is to test and demonstrate the applicability of different vegetation indices to estimate the biomass productivity, the foliar nitrogen content (FNC), the plant height and the leaf area index (LAI) of several tropical grasslands species submitted to different nitrogen (N) rates in an experimental area of São Paulo, Brazil. Field reflectance data of Panicum maximum and Urochloa brizantha species' cultivars were taken and convoluted to the Sentinel-2 satellite bands. Subsequently, different vegetation indices (Normalized Difference Vegetation Index (NDI), Three Band Index (TBI), Difference light Height (DLH), Three Band Dall?Olmo (DO), and Normalized Area Over reflectance Curve (NAOC)) were tested for the experimental grassland areas, and composed of Urochloa decumbens and Urochloa brizantha grass species, which were sampled and destructively analyzed. Our results show the use of different relevant Sentinel-2 bands in the visible (VIS)-near infrared (NIR) regions for the estimation of the different biophysical parameters. The FNC obtained the best correlation for the TBI index combining blue, green and red bands with a determination coefficient (R2) of 0.38 and Root Mean Square Error (RMSE) of 3.4 g kg-1. The estimation of grassland productivity based on red-edge and NIR bands showed a R2 = 0.54 and a RMSE = 1800 kg ha-1. For the LAI, the best index was the NAOC (R2 = 0.57 and RMSE = 1.4 m2 m-2). High values of FNC, productivity and LAI based on different sets of Sentinel-2 bands were consistently obtained for areas under N fertilization. |
id |
EMBR_35277fbfca26d3d2338b7b2499a8d6ea |
---|---|
oai_identifier_str |
oai:www.alice.cnptia.embrapa.br:doc/1124094 |
network_acronym_str |
EMBR |
network_name_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository_id_str |
2154 |
spelling |
Mapping productivity and essential biophysical parameters of cultivated tropical grasslands from sentinel-2 imagery.ProductivitySentinel-2PastagemCapim UrochloaBiomassaNitrogênioSensoriamento RemotoLeaf area indexTropical grasslandsPasturesBiomass productionNitrogenRemote sensingVegetation indexUrochloa brizanthaUrochloa decumbensPanicumAbstract: Nitrogen (N) is the main nutrient element that maintains productivity in forages; it is inextricably linked to dry matter increase and plant support capacity. In recent years, high spectral and spatial resolution remote sensors, e.g., the European Space Agency (ESA)?s Sentinel satellite missions, have become freely available for agricultural science, and have proven to be powerful monitoring tools. The use of vegetation indices has been essential for crop monitoring and biomass estimation models. The objective of this work is to test and demonstrate the applicability of different vegetation indices to estimate the biomass productivity, the foliar nitrogen content (FNC), the plant height and the leaf area index (LAI) of several tropical grasslands species submitted to different nitrogen (N) rates in an experimental area of São Paulo, Brazil. Field reflectance data of Panicum maximum and Urochloa brizantha species' cultivars were taken and convoluted to the Sentinel-2 satellite bands. Subsequently, different vegetation indices (Normalized Difference Vegetation Index (NDI), Three Band Index (TBI), Difference light Height (DLH), Three Band Dall?Olmo (DO), and Normalized Area Over reflectance Curve (NAOC)) were tested for the experimental grassland areas, and composed of Urochloa decumbens and Urochloa brizantha grass species, which were sampled and destructively analyzed. Our results show the use of different relevant Sentinel-2 bands in the visible (VIS)-near infrared (NIR) regions for the estimation of the different biophysical parameters. The FNC obtained the best correlation for the TBI index combining blue, green and red bands with a determination coefficient (R2) of 0.38 and Root Mean Square Error (RMSE) of 3.4 g kg-1. The estimation of grassland productivity based on red-edge and NIR bands showed a R2 = 0.54 and a RMSE = 1800 kg ha-1. For the LAI, the best index was the NAOC (R2 = 0.57 and RMSE = 1.4 m2 m-2). High values of FNC, productivity and LAI based on different sets of Sentinel-2 bands were consistently obtained for areas under N fertilization.AMPARO CISNEROS, ESALQ-USP; PETERSON FIORIO, ESALQ-USP; PATRICIA MENEZES SANTOS, CPPSE; NIEVES PASQUALOTTO, Universidad de Valencia; SHARI VAN WITTENBERGHE, Universidad de Valencia; GUSTAVO BAYMA SIQUEIRA DA SILVA, CNPMA; SANDRA FURLAN NOGUEIRA, CNPMA.CISNEROS, A.FIORIO, P. R.SANTOS, P. M.PASQUALOTTO, N.WITTENBERGHE, S. vanSILVA, G. B. S. daNOGUEIRA, S. F.2020-07-31T11:13:14Z2020-07-31T11:13:14Z2020-07-302020info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlep. 1-23.Agronomy, v. 10, n. 5, p. 1-23, 2020. Article 711.http://www.alice.cnptia.embrapa.br/alice/handle/doc/1124094https://doi.org/10.3390/agronomy10050711enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2020-07-31T11:13:23Zoai:www.alice.cnptia.embrapa.br:doc/1124094Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542020-07-31T11:13:23falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542020-07-31T11:13:23Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
Mapping productivity and essential biophysical parameters of cultivated tropical grasslands from sentinel-2 imagery. |
title |
Mapping productivity and essential biophysical parameters of cultivated tropical grasslands from sentinel-2 imagery. |
spellingShingle |
Mapping productivity and essential biophysical parameters of cultivated tropical grasslands from sentinel-2 imagery. CISNEROS, A. Productivity Sentinel-2 Pastagem Capim Urochloa Biomassa Nitrogênio Sensoriamento Remoto Leaf area index Tropical grasslands Pastures Biomass production Nitrogen Remote sensing Vegetation index Urochloa brizantha Urochloa decumbens Panicum |
title_short |
Mapping productivity and essential biophysical parameters of cultivated tropical grasslands from sentinel-2 imagery. |
title_full |
Mapping productivity and essential biophysical parameters of cultivated tropical grasslands from sentinel-2 imagery. |
title_fullStr |
Mapping productivity and essential biophysical parameters of cultivated tropical grasslands from sentinel-2 imagery. |
title_full_unstemmed |
Mapping productivity and essential biophysical parameters of cultivated tropical grasslands from sentinel-2 imagery. |
title_sort |
Mapping productivity and essential biophysical parameters of cultivated tropical grasslands from sentinel-2 imagery. |
author |
CISNEROS, A. |
author_facet |
CISNEROS, A. FIORIO, P. R. SANTOS, P. M. PASQUALOTTO, N. WITTENBERGHE, S. van SILVA, G. B. S. da NOGUEIRA, S. F. |
author_role |
author |
author2 |
FIORIO, P. R. SANTOS, P. M. PASQUALOTTO, N. WITTENBERGHE, S. van SILVA, G. B. S. da NOGUEIRA, S. F. |
author2_role |
author author author author author author |
dc.contributor.none.fl_str_mv |
AMPARO CISNEROS, ESALQ-USP; PETERSON FIORIO, ESALQ-USP; PATRICIA MENEZES SANTOS, CPPSE; NIEVES PASQUALOTTO, Universidad de Valencia; SHARI VAN WITTENBERGHE, Universidad de Valencia; GUSTAVO BAYMA SIQUEIRA DA SILVA, CNPMA; SANDRA FURLAN NOGUEIRA, CNPMA. |
dc.contributor.author.fl_str_mv |
CISNEROS, A. FIORIO, P. R. SANTOS, P. M. PASQUALOTTO, N. WITTENBERGHE, S. van SILVA, G. B. S. da NOGUEIRA, S. F. |
dc.subject.por.fl_str_mv |
Productivity Sentinel-2 Pastagem Capim Urochloa Biomassa Nitrogênio Sensoriamento Remoto Leaf area index Tropical grasslands Pastures Biomass production Nitrogen Remote sensing Vegetation index Urochloa brizantha Urochloa decumbens Panicum |
topic |
Productivity Sentinel-2 Pastagem Capim Urochloa Biomassa Nitrogênio Sensoriamento Remoto Leaf area index Tropical grasslands Pastures Biomass production Nitrogen Remote sensing Vegetation index Urochloa brizantha Urochloa decumbens Panicum |
description |
Abstract: Nitrogen (N) is the main nutrient element that maintains productivity in forages; it is inextricably linked to dry matter increase and plant support capacity. In recent years, high spectral and spatial resolution remote sensors, e.g., the European Space Agency (ESA)?s Sentinel satellite missions, have become freely available for agricultural science, and have proven to be powerful monitoring tools. The use of vegetation indices has been essential for crop monitoring and biomass estimation models. The objective of this work is to test and demonstrate the applicability of different vegetation indices to estimate the biomass productivity, the foliar nitrogen content (FNC), the plant height and the leaf area index (LAI) of several tropical grasslands species submitted to different nitrogen (N) rates in an experimental area of São Paulo, Brazil. Field reflectance data of Panicum maximum and Urochloa brizantha species' cultivars were taken and convoluted to the Sentinel-2 satellite bands. Subsequently, different vegetation indices (Normalized Difference Vegetation Index (NDI), Three Band Index (TBI), Difference light Height (DLH), Three Band Dall?Olmo (DO), and Normalized Area Over reflectance Curve (NAOC)) were tested for the experimental grassland areas, and composed of Urochloa decumbens and Urochloa brizantha grass species, which were sampled and destructively analyzed. Our results show the use of different relevant Sentinel-2 bands in the visible (VIS)-near infrared (NIR) regions for the estimation of the different biophysical parameters. The FNC obtained the best correlation for the TBI index combining blue, green and red bands with a determination coefficient (R2) of 0.38 and Root Mean Square Error (RMSE) of 3.4 g kg-1. The estimation of grassland productivity based on red-edge and NIR bands showed a R2 = 0.54 and a RMSE = 1800 kg ha-1. For the LAI, the best index was the NAOC (R2 = 0.57 and RMSE = 1.4 m2 m-2). High values of FNC, productivity and LAI based on different sets of Sentinel-2 bands were consistently obtained for areas under N fertilization. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-07-31T11:13:14Z 2020-07-31T11:13:14Z 2020-07-30 2020 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Agronomy, v. 10, n. 5, p. 1-23, 2020. Article 711. http://www.alice.cnptia.embrapa.br/alice/handle/doc/1124094 https://doi.org/10.3390/agronomy10050711 |
identifier_str_mv |
Agronomy, v. 10, n. 5, p. 1-23, 2020. Article 711. |
url |
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1124094 https://doi.org/10.3390/agronomy10050711 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
p. 1-23. |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
collection |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository.name.fl_str_mv |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
cg-riaa@embrapa.br |
_version_ |
1794503494238994432 |