Multi-trait multi-environment models for selecting high-performance and stable eucalyptus clones.

Detalhes bibliográficos
Autor(a) principal: FERREIRA, F. M.
Data de Publicação: 2023
Outros Autores: CHAVES, S. F. da S., PEIXOTO, M. A., ALVES, R. S., COELHO, I. F., RESENDE, M. D. V. de, SANTOS, G. A. dos, BHERING, L. L.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1159359
https://doi.org/10.4025/actasciagron.v45i1.61626
Resumo: Multi-trait multi-environment (MTME) models were fitted to eucalyptus breeding trials data to assess residual variance structure, genetic stability and adaptability. To do so, 215 eucalyptus clones were evaluated in a randomized complete block design with 30 replicates and one plant per plot in four environments. At 36 months of age, tree diameter at breast height (DBH) and pilodyn penetration (PP) were measured. Two MTME models were fitted, for which residuals were considered homoscedastic and heteroscedastic, with the best MTME model selected using Bayesian information criterion. The harmonic mean of the relative performance of the genotypic values (HMRPGV) was used to determine stability and adaptability. Of the two models, the heteroscedastic MTME model had better fit and provided greater accuracy. In addition, genotype-by-environment interaction was complex, and there was low genetic correlation between DBH and PP. Rank correlation between the clones selected by the MTME models was high for DBH but low for PP. The HMRPGV facilitated clone selection through simultaneous evaluation of stability, adaptability, and productivity. Thus, our results suggest that heteroscedastic MTME model / HMRPGV can be efficiently applied in the genetic evaluation and selection of eucalyptus clones.
id EMBR_380841336191b57d6a55b7be0a9a337b
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/1159359
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling Multi-trait multi-environment models for selecting high-performance and stable eucalyptus clones.Quantitative geneticsGenotype-environment interactionMultivariate analysisGenetic varianceEucalyptusClonesMulti-trait multi-environment (MTME) models were fitted to eucalyptus breeding trials data to assess residual variance structure, genetic stability and adaptability. To do so, 215 eucalyptus clones were evaluated in a randomized complete block design with 30 replicates and one plant per plot in four environments. At 36 months of age, tree diameter at breast height (DBH) and pilodyn penetration (PP) were measured. Two MTME models were fitted, for which residuals were considered homoscedastic and heteroscedastic, with the best MTME model selected using Bayesian information criterion. The harmonic mean of the relative performance of the genotypic values (HMRPGV) was used to determine stability and adaptability. Of the two models, the heteroscedastic MTME model had better fit and provided greater accuracy. In addition, genotype-by-environment interaction was complex, and there was low genetic correlation between DBH and PP. Rank correlation between the clones selected by the MTME models was high for DBH but low for PP. The HMRPGV facilitated clone selection through simultaneous evaluation of stability, adaptability, and productivity. Thus, our results suggest that heteroscedastic MTME model / HMRPGV can be efficiently applied in the genetic evaluation and selection of eucalyptus clones.FILIPE MANOEL FERREIRA, UNIVERSIDADE FEDERAL DE VIÇOSA; SAULO FABRÍCIO DA SILVA CHAVES, UNIVERSIDADE FEDERAL DE VIÇOSA; MARCO ANTÔNIO PEIXOTO, UNIVERSIDADE FEDERAL DE VIÇOSA; RODRIGO SILVA ALVES, INSTITUTO NACIONAL DE CIÊNCIA E TECNOLOGIA DO CAFÉ; IGOR FERREIRA COELHO, UNIVERSIDADE FEDERAL DE VIÇOSA; MARCOS DEON VILELA DE RESENDE, CNPCa; GLEISON AUGUSTO DOS SANTOS, UNIVERSIDADE FEDERAL DE VIÇOSA; LEONARDO LOPES BHERING, UNIVERSIDADE FEDERAL DE VIÇOSA.FERREIRA, F. M.CHAVES, S. F. da S.PEIXOTO, M. A.ALVES, R. S.COELHO, I. F.RESENDE, M. D. V. deSANTOS, G. A. dosBHERING, L. L.2023-12-08T15:32:22Z2023-12-08T15:32:22Z2023-12-082023info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article9 p.Acta Scientiarum. Agronomy, v. 45, e61626, 2023.http://www.alice.cnptia.embrapa.br/alice/handle/doc/1159359https://doi.org/10.4025/actasciagron.v45i1.61626enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2023-12-08T15:32:22Zoai:www.alice.cnptia.embrapa.br:doc/1159359Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542023-12-08T15:32:22Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Multi-trait multi-environment models for selecting high-performance and stable eucalyptus clones.
title Multi-trait multi-environment models for selecting high-performance and stable eucalyptus clones.
spellingShingle Multi-trait multi-environment models for selecting high-performance and stable eucalyptus clones.
FERREIRA, F. M.
Quantitative genetics
Genotype-environment interaction
Multivariate analysis
Genetic variance
Eucalyptus
Clones
title_short Multi-trait multi-environment models for selecting high-performance and stable eucalyptus clones.
title_full Multi-trait multi-environment models for selecting high-performance and stable eucalyptus clones.
title_fullStr Multi-trait multi-environment models for selecting high-performance and stable eucalyptus clones.
title_full_unstemmed Multi-trait multi-environment models for selecting high-performance and stable eucalyptus clones.
title_sort Multi-trait multi-environment models for selecting high-performance and stable eucalyptus clones.
author FERREIRA, F. M.
author_facet FERREIRA, F. M.
CHAVES, S. F. da S.
PEIXOTO, M. A.
ALVES, R. S.
COELHO, I. F.
RESENDE, M. D. V. de
SANTOS, G. A. dos
BHERING, L. L.
author_role author
author2 CHAVES, S. F. da S.
PEIXOTO, M. A.
ALVES, R. S.
COELHO, I. F.
RESENDE, M. D. V. de
SANTOS, G. A. dos
BHERING, L. L.
author2_role author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv FILIPE MANOEL FERREIRA, UNIVERSIDADE FEDERAL DE VIÇOSA; SAULO FABRÍCIO DA SILVA CHAVES, UNIVERSIDADE FEDERAL DE VIÇOSA; MARCO ANTÔNIO PEIXOTO, UNIVERSIDADE FEDERAL DE VIÇOSA; RODRIGO SILVA ALVES, INSTITUTO NACIONAL DE CIÊNCIA E TECNOLOGIA DO CAFÉ; IGOR FERREIRA COELHO, UNIVERSIDADE FEDERAL DE VIÇOSA; MARCOS DEON VILELA DE RESENDE, CNPCa; GLEISON AUGUSTO DOS SANTOS, UNIVERSIDADE FEDERAL DE VIÇOSA; LEONARDO LOPES BHERING, UNIVERSIDADE FEDERAL DE VIÇOSA.
dc.contributor.author.fl_str_mv FERREIRA, F. M.
CHAVES, S. F. da S.
PEIXOTO, M. A.
ALVES, R. S.
COELHO, I. F.
RESENDE, M. D. V. de
SANTOS, G. A. dos
BHERING, L. L.
dc.subject.por.fl_str_mv Quantitative genetics
Genotype-environment interaction
Multivariate analysis
Genetic variance
Eucalyptus
Clones
topic Quantitative genetics
Genotype-environment interaction
Multivariate analysis
Genetic variance
Eucalyptus
Clones
description Multi-trait multi-environment (MTME) models were fitted to eucalyptus breeding trials data to assess residual variance structure, genetic stability and adaptability. To do so, 215 eucalyptus clones were evaluated in a randomized complete block design with 30 replicates and one plant per plot in four environments. At 36 months of age, tree diameter at breast height (DBH) and pilodyn penetration (PP) were measured. Two MTME models were fitted, for which residuals were considered homoscedastic and heteroscedastic, with the best MTME model selected using Bayesian information criterion. The harmonic mean of the relative performance of the genotypic values (HMRPGV) was used to determine stability and adaptability. Of the two models, the heteroscedastic MTME model had better fit and provided greater accuracy. In addition, genotype-by-environment interaction was complex, and there was low genetic correlation between DBH and PP. Rank correlation between the clones selected by the MTME models was high for DBH but low for PP. The HMRPGV facilitated clone selection through simultaneous evaluation of stability, adaptability, and productivity. Thus, our results suggest that heteroscedastic MTME model / HMRPGV can be efficiently applied in the genetic evaluation and selection of eucalyptus clones.
publishDate 2023
dc.date.none.fl_str_mv 2023-12-08T15:32:22Z
2023-12-08T15:32:22Z
2023-12-08
2023
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv Acta Scientiarum. Agronomy, v. 45, e61626, 2023.
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1159359
https://doi.org/10.4025/actasciagron.v45i1.61626
identifier_str_mv Acta Scientiarum. Agronomy, v. 45, e61626, 2023.
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/1159359
https://doi.org/10.4025/actasciagron.v45i1.61626
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 9 p.
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1817695688876621824