Multi-trait multi-environment models for selecting high-performance and stable eucalyptus clones.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
Texto Completo: | http://www.alice.cnptia.embrapa.br/alice/handle/doc/1159359 https://doi.org/10.4025/actasciagron.v45i1.61626 |
Resumo: | Multi-trait multi-environment (MTME) models were fitted to eucalyptus breeding trials data to assess residual variance structure, genetic stability and adaptability. To do so, 215 eucalyptus clones were evaluated in a randomized complete block design with 30 replicates and one plant per plot in four environments. At 36 months of age, tree diameter at breast height (DBH) and pilodyn penetration (PP) were measured. Two MTME models were fitted, for which residuals were considered homoscedastic and heteroscedastic, with the best MTME model selected using Bayesian information criterion. The harmonic mean of the relative performance of the genotypic values (HMRPGV) was used to determine stability and adaptability. Of the two models, the heteroscedastic MTME model had better fit and provided greater accuracy. In addition, genotype-by-environment interaction was complex, and there was low genetic correlation between DBH and PP. Rank correlation between the clones selected by the MTME models was high for DBH but low for PP. The HMRPGV facilitated clone selection through simultaneous evaluation of stability, adaptability, and productivity. Thus, our results suggest that heteroscedastic MTME model / HMRPGV can be efficiently applied in the genetic evaluation and selection of eucalyptus clones. |
id |
EMBR_380841336191b57d6a55b7be0a9a337b |
---|---|
oai_identifier_str |
oai:www.alice.cnptia.embrapa.br:doc/1159359 |
network_acronym_str |
EMBR |
network_name_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository_id_str |
2154 |
spelling |
Multi-trait multi-environment models for selecting high-performance and stable eucalyptus clones.Quantitative geneticsGenotype-environment interactionMultivariate analysisGenetic varianceEucalyptusClonesMulti-trait multi-environment (MTME) models were fitted to eucalyptus breeding trials data to assess residual variance structure, genetic stability and adaptability. To do so, 215 eucalyptus clones were evaluated in a randomized complete block design with 30 replicates and one plant per plot in four environments. At 36 months of age, tree diameter at breast height (DBH) and pilodyn penetration (PP) were measured. Two MTME models were fitted, for which residuals were considered homoscedastic and heteroscedastic, with the best MTME model selected using Bayesian information criterion. The harmonic mean of the relative performance of the genotypic values (HMRPGV) was used to determine stability and adaptability. Of the two models, the heteroscedastic MTME model had better fit and provided greater accuracy. In addition, genotype-by-environment interaction was complex, and there was low genetic correlation between DBH and PP. Rank correlation between the clones selected by the MTME models was high for DBH but low for PP. The HMRPGV facilitated clone selection through simultaneous evaluation of stability, adaptability, and productivity. Thus, our results suggest that heteroscedastic MTME model / HMRPGV can be efficiently applied in the genetic evaluation and selection of eucalyptus clones.FILIPE MANOEL FERREIRA, UNIVERSIDADE FEDERAL DE VIÇOSA; SAULO FABRÍCIO DA SILVA CHAVES, UNIVERSIDADE FEDERAL DE VIÇOSA; MARCO ANTÔNIO PEIXOTO, UNIVERSIDADE FEDERAL DE VIÇOSA; RODRIGO SILVA ALVES, INSTITUTO NACIONAL DE CIÊNCIA E TECNOLOGIA DO CAFÉ; IGOR FERREIRA COELHO, UNIVERSIDADE FEDERAL DE VIÇOSA; MARCOS DEON VILELA DE RESENDE, CNPCa; GLEISON AUGUSTO DOS SANTOS, UNIVERSIDADE FEDERAL DE VIÇOSA; LEONARDO LOPES BHERING, UNIVERSIDADE FEDERAL DE VIÇOSA.FERREIRA, F. M.CHAVES, S. F. da S.PEIXOTO, M. A.ALVES, R. S.COELHO, I. F.RESENDE, M. D. V. deSANTOS, G. A. dosBHERING, L. L.2023-12-08T15:32:22Z2023-12-08T15:32:22Z2023-12-082023info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article9 p.Acta Scientiarum. Agronomy, v. 45, e61626, 2023.http://www.alice.cnptia.embrapa.br/alice/handle/doc/1159359https://doi.org/10.4025/actasciagron.v45i1.61626enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2023-12-08T15:32:22Zoai:www.alice.cnptia.embrapa.br:doc/1159359Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542023-12-08T15:32:22Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
Multi-trait multi-environment models for selecting high-performance and stable eucalyptus clones. |
title |
Multi-trait multi-environment models for selecting high-performance and stable eucalyptus clones. |
spellingShingle |
Multi-trait multi-environment models for selecting high-performance and stable eucalyptus clones. FERREIRA, F. M. Quantitative genetics Genotype-environment interaction Multivariate analysis Genetic variance Eucalyptus Clones |
title_short |
Multi-trait multi-environment models for selecting high-performance and stable eucalyptus clones. |
title_full |
Multi-trait multi-environment models for selecting high-performance and stable eucalyptus clones. |
title_fullStr |
Multi-trait multi-environment models for selecting high-performance and stable eucalyptus clones. |
title_full_unstemmed |
Multi-trait multi-environment models for selecting high-performance and stable eucalyptus clones. |
title_sort |
Multi-trait multi-environment models for selecting high-performance and stable eucalyptus clones. |
author |
FERREIRA, F. M. |
author_facet |
FERREIRA, F. M. CHAVES, S. F. da S. PEIXOTO, M. A. ALVES, R. S. COELHO, I. F. RESENDE, M. D. V. de SANTOS, G. A. dos BHERING, L. L. |
author_role |
author |
author2 |
CHAVES, S. F. da S. PEIXOTO, M. A. ALVES, R. S. COELHO, I. F. RESENDE, M. D. V. de SANTOS, G. A. dos BHERING, L. L. |
author2_role |
author author author author author author author |
dc.contributor.none.fl_str_mv |
FILIPE MANOEL FERREIRA, UNIVERSIDADE FEDERAL DE VIÇOSA; SAULO FABRÍCIO DA SILVA CHAVES, UNIVERSIDADE FEDERAL DE VIÇOSA; MARCO ANTÔNIO PEIXOTO, UNIVERSIDADE FEDERAL DE VIÇOSA; RODRIGO SILVA ALVES, INSTITUTO NACIONAL DE CIÊNCIA E TECNOLOGIA DO CAFÉ; IGOR FERREIRA COELHO, UNIVERSIDADE FEDERAL DE VIÇOSA; MARCOS DEON VILELA DE RESENDE, CNPCa; GLEISON AUGUSTO DOS SANTOS, UNIVERSIDADE FEDERAL DE VIÇOSA; LEONARDO LOPES BHERING, UNIVERSIDADE FEDERAL DE VIÇOSA. |
dc.contributor.author.fl_str_mv |
FERREIRA, F. M. CHAVES, S. F. da S. PEIXOTO, M. A. ALVES, R. S. COELHO, I. F. RESENDE, M. D. V. de SANTOS, G. A. dos BHERING, L. L. |
dc.subject.por.fl_str_mv |
Quantitative genetics Genotype-environment interaction Multivariate analysis Genetic variance Eucalyptus Clones |
topic |
Quantitative genetics Genotype-environment interaction Multivariate analysis Genetic variance Eucalyptus Clones |
description |
Multi-trait multi-environment (MTME) models were fitted to eucalyptus breeding trials data to assess residual variance structure, genetic stability and adaptability. To do so, 215 eucalyptus clones were evaluated in a randomized complete block design with 30 replicates and one plant per plot in four environments. At 36 months of age, tree diameter at breast height (DBH) and pilodyn penetration (PP) were measured. Two MTME models were fitted, for which residuals were considered homoscedastic and heteroscedastic, with the best MTME model selected using Bayesian information criterion. The harmonic mean of the relative performance of the genotypic values (HMRPGV) was used to determine stability and adaptability. Of the two models, the heteroscedastic MTME model had better fit and provided greater accuracy. In addition, genotype-by-environment interaction was complex, and there was low genetic correlation between DBH and PP. Rank correlation between the clones selected by the MTME models was high for DBH but low for PP. The HMRPGV facilitated clone selection through simultaneous evaluation of stability, adaptability, and productivity. Thus, our results suggest that heteroscedastic MTME model / HMRPGV can be efficiently applied in the genetic evaluation and selection of eucalyptus clones. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-12-08T15:32:22Z 2023-12-08T15:32:22Z 2023-12-08 2023 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Acta Scientiarum. Agronomy, v. 45, e61626, 2023. http://www.alice.cnptia.embrapa.br/alice/handle/doc/1159359 https://doi.org/10.4025/actasciagron.v45i1.61626 |
identifier_str_mv |
Acta Scientiarum. Agronomy, v. 45, e61626, 2023. |
url |
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1159359 https://doi.org/10.4025/actasciagron.v45i1.61626 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
9 p. |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
collection |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository.name.fl_str_mv |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
cg-riaa@embrapa.br |
_version_ |
1817695688876621824 |