Classification of soil respiration in areas of sugarcane renewal using decision tree.

Detalhes bibliográficos
Autor(a) principal: FARHATE, C. V. V.
Data de Publicação: 2018
Outros Autores: SOUZA, Z. M. de, OLIVEIRA, S. R. de M., CARVALHO, J. L. N., LA SCALA JÚNIOR, N., SANTOS, A. P. G.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1105884
http://dx.doi.org/10.1590/1678-992X-2016-0473
Resumo: ABSTRACT: The use of data mining is a promising alternative to predict soil respiration from correlated variables. Our objective was to build a model using variable selection and decision tree induction to predict different levels of soil respiration, taking into account physical, chemical and microbiological variables of soil as well as precipitation in renewal of sugarcane areas. The original dataset was composed of 19 variables (18 independent variables and one dependent (or response) variable). The variable-target refers to soil respiration as the target classification. Due to a large number of variables, a procedure for variable selection was conducted to remove those with low correlation with the variable-target. For that purpose, four approaches of variable selection were evaluated: no variable selection, correlation-based feature selection (CFS), chisquare method (χ2) and Wrapper. To classify soil respiration, we used the decision tree induction technique available in the Weka software package. Our results showed that data mining techniques allow the development of a model for soil respiration classification with accuracy of 81 %, resulting in a knowledge base composed of 27 rules for prediction of soil respiration. In particular, the wrapper method for variable selection identified a subset of only five variables out of 18 available in the original dataset, and they had the following order of influence in determining soil respiration: soil temperature > precipitation > macroporosity > soil moisture > potential acidity.
id EMBR_3ba52b7191761804c46ba3462289faf8
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/1105884
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling Classification of soil respiration in areas of sugarcane renewal using decision tree.Mineração de dadosEmissão de gás carbônico no soloSeleção de variávelTemperatura no soloMatéria orgânica no soloÁrvore de decisãoData miningVariable selectionDecision treeRespiração do SoloCarbon dioxideSoil temperatureSoil organic matterABSTRACT: The use of data mining is a promising alternative to predict soil respiration from correlated variables. Our objective was to build a model using variable selection and decision tree induction to predict different levels of soil respiration, taking into account physical, chemical and microbiological variables of soil as well as precipitation in renewal of sugarcane areas. The original dataset was composed of 19 variables (18 independent variables and one dependent (or response) variable). The variable-target refers to soil respiration as the target classification. Due to a large number of variables, a procedure for variable selection was conducted to remove those with low correlation with the variable-target. For that purpose, four approaches of variable selection were evaluated: no variable selection, correlation-based feature selection (CFS), chisquare method (χ2) and Wrapper. To classify soil respiration, we used the decision tree induction technique available in the Weka software package. Our results showed that data mining techniques allow the development of a model for soil respiration classification with accuracy of 81 %, resulting in a knowledge base composed of 27 rules for prediction of soil respiration. In particular, the wrapper method for variable selection identified a subset of only five variables out of 18 available in the original dataset, and they had the following order of influence in determining soil respiration: soil temperature > precipitation > macroporosity > soil moisture > potential acidity.CAMILA VIANA VIEIRA FARHATE, Feagri/Unicamp; ZIGOMAR MENEZES DE SOUZA, Feagri/Unicamp; STANLEY ROBSON DE MEDEIROS OLIVEIRA, CNPTIA, Feagri/Unicamp; JOÃO LUÍS NUNES CARVALHO, CNPEM; NEWTON LA SCALA JÚNIOR, Unesp; ANA PAULA GUIMARÃES SANTOS, Feagri/Unicamp.FARHATE, C. V. V.SOUZA, Z. M. deOLIVEIRA, S. R. de M.CARVALHO, J. L. N.LA SCALA JÚNIOR, N.SANTOS, A. P. G.2019-02-13T23:41:33Z2019-02-13T23:41:33Z2019-02-1320182019-02-13T23:41:33Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleScientia Agricola, v. 75, n. 3, p. 216-224, May/June 2018.http://www.alice.cnptia.embrapa.br/alice/handle/doc/1105884http://dx.doi.org/10.1590/1678-992X-2016-0473enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2019-02-13T23:41:42Zoai:www.alice.cnptia.embrapa.br:doc/1105884Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542019-02-13T23:41:42falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542019-02-13T23:41:42Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Classification of soil respiration in areas of sugarcane renewal using decision tree.
title Classification of soil respiration in areas of sugarcane renewal using decision tree.
spellingShingle Classification of soil respiration in areas of sugarcane renewal using decision tree.
FARHATE, C. V. V.
Mineração de dados
Emissão de gás carbônico no solo
Seleção de variável
Temperatura no solo
Matéria orgânica no solo
Árvore de decisão
Data mining
Variable selection
Decision tree
Respiração do Solo
Carbon dioxide
Soil temperature
Soil organic matter
title_short Classification of soil respiration in areas of sugarcane renewal using decision tree.
title_full Classification of soil respiration in areas of sugarcane renewal using decision tree.
title_fullStr Classification of soil respiration in areas of sugarcane renewal using decision tree.
title_full_unstemmed Classification of soil respiration in areas of sugarcane renewal using decision tree.
title_sort Classification of soil respiration in areas of sugarcane renewal using decision tree.
author FARHATE, C. V. V.
author_facet FARHATE, C. V. V.
SOUZA, Z. M. de
OLIVEIRA, S. R. de M.
CARVALHO, J. L. N.
LA SCALA JÚNIOR, N.
SANTOS, A. P. G.
author_role author
author2 SOUZA, Z. M. de
OLIVEIRA, S. R. de M.
CARVALHO, J. L. N.
LA SCALA JÚNIOR, N.
SANTOS, A. P. G.
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv CAMILA VIANA VIEIRA FARHATE, Feagri/Unicamp; ZIGOMAR MENEZES DE SOUZA, Feagri/Unicamp; STANLEY ROBSON DE MEDEIROS OLIVEIRA, CNPTIA, Feagri/Unicamp; JOÃO LUÍS NUNES CARVALHO, CNPEM; NEWTON LA SCALA JÚNIOR, Unesp; ANA PAULA GUIMARÃES SANTOS, Feagri/Unicamp.
dc.contributor.author.fl_str_mv FARHATE, C. V. V.
SOUZA, Z. M. de
OLIVEIRA, S. R. de M.
CARVALHO, J. L. N.
LA SCALA JÚNIOR, N.
SANTOS, A. P. G.
dc.subject.por.fl_str_mv Mineração de dados
Emissão de gás carbônico no solo
Seleção de variável
Temperatura no solo
Matéria orgânica no solo
Árvore de decisão
Data mining
Variable selection
Decision tree
Respiração do Solo
Carbon dioxide
Soil temperature
Soil organic matter
topic Mineração de dados
Emissão de gás carbônico no solo
Seleção de variável
Temperatura no solo
Matéria orgânica no solo
Árvore de decisão
Data mining
Variable selection
Decision tree
Respiração do Solo
Carbon dioxide
Soil temperature
Soil organic matter
description ABSTRACT: The use of data mining is a promising alternative to predict soil respiration from correlated variables. Our objective was to build a model using variable selection and decision tree induction to predict different levels of soil respiration, taking into account physical, chemical and microbiological variables of soil as well as precipitation in renewal of sugarcane areas. The original dataset was composed of 19 variables (18 independent variables and one dependent (or response) variable). The variable-target refers to soil respiration as the target classification. Due to a large number of variables, a procedure for variable selection was conducted to remove those with low correlation with the variable-target. For that purpose, four approaches of variable selection were evaluated: no variable selection, correlation-based feature selection (CFS), chisquare method (χ2) and Wrapper. To classify soil respiration, we used the decision tree induction technique available in the Weka software package. Our results showed that data mining techniques allow the development of a model for soil respiration classification with accuracy of 81 %, resulting in a knowledge base composed of 27 rules for prediction of soil respiration. In particular, the wrapper method for variable selection identified a subset of only five variables out of 18 available in the original dataset, and they had the following order of influence in determining soil respiration: soil temperature > precipitation > macroporosity > soil moisture > potential acidity.
publishDate 2018
dc.date.none.fl_str_mv 2018
2019-02-13T23:41:33Z
2019-02-13T23:41:33Z
2019-02-13
2019-02-13T23:41:33Z
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv Scientia Agricola, v. 75, n. 3, p. 216-224, May/June 2018.
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1105884
http://dx.doi.org/10.1590/1678-992X-2016-0473
identifier_str_mv Scientia Agricola, v. 75, n. 3, p. 216-224, May/June 2018.
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/1105884
http://dx.doi.org/10.1590/1678-992X-2016-0473
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1794503471433515008