Simulation of robust adaptive regression multi-level models for quality analysis of special coffees in cold storage

Detalhes bibliográficos
Autor(a) principal: MANOEL, I. dos S.
Data de Publicação: 2023
Outros Autores: RESENDE, M., SOUSA, P. H. A., ROSA, S. D. V. F. da, CIRILLO, M. A.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1158148
https://doi.org/10.4025/actascitechnol.v46i1.59135
Resumo: ABSTRACT. Numerous factors contribute to specialty coffee quality, storage and cooling conditions. We may therefore assume that sensory evaluation results can be corrupted by measurement errors, especially when cuppers are not trained, leading to occurrence of observation outliers. Therefore, this study aimed to propose simulation scenarios considering parametric values of multilevel model fit with robust adaptive regressions to the presence of outliers in a real experiment with processed and unprocessed coffee beans stored at different times and temperatures. In this context, we considered computationally simulated scenarios in which sensory scoring errors can be made at L = 5 and 10 units. The proposed method was feasible for the sensory scoring of an experiment of coffee storage conditions and cooled environments. This is because it included robust characteristics of samples evaluated with up to 30% of outliers.
id EMBR_442fe5c09abd7c74a48c93a11d43cd44
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/1158148
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling Simulation of robust adaptive regression multi-level models for quality analysis of special coffees in cold storageRegression analysisCold storageCoffeaABSTRACT. Numerous factors contribute to specialty coffee quality, storage and cooling conditions. We may therefore assume that sensory evaluation results can be corrupted by measurement errors, especially when cuppers are not trained, leading to occurrence of observation outliers. Therefore, this study aimed to propose simulation scenarios considering parametric values of multilevel model fit with robust adaptive regressions to the presence of outliers in a real experiment with processed and unprocessed coffee beans stored at different times and temperatures. In this context, we considered computationally simulated scenarios in which sensory scoring errors can be made at L = 5 and 10 units. The proposed method was feasible for the sensory scoring of an experiment of coffee storage conditions and cooled environments. This is because it included robust characteristics of samples evaluated with up to 30% of outliers.IURI DOS SANTOS MANOEL, UNIVERSIDADE FEDERAL DE LAVRAS; MARIANA RESENDE, UNIVERSIDADE FEDERAL DE LAVRAS; PEDRO HERIQUE ASSIS SOUSA, UNIVERSIDADE FEDERAL DE LAVRAS; STTELA DELLYZETE VEIGA F DA ROSA, CNPCa; MARCELO ANGELO CIRILLO, UNIVERSIDADE FEDERAL DE LAVRAS.MANOEL, I. dos S.RESENDE, M.SOUSA, P. H. A.ROSA, S. D. V. F. daCIRILLO, M. A.2023-11-09T20:46:12Z2023-11-09T20:46:12Z2023-11-092024info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article10 p.Acta Scientiarum. Technology, v. 46, n. 1, e59135, 2024.http://www.alice.cnptia.embrapa.br/alice/handle/doc/1158148https://doi.org/10.4025/actascitechnol.v46i1.59135enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2023-11-09T20:46:12Zoai:www.alice.cnptia.embrapa.br:doc/1158148Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542023-11-09T20:46:12falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542023-11-09T20:46:12Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Simulation of robust adaptive regression multi-level models for quality analysis of special coffees in cold storage
title Simulation of robust adaptive regression multi-level models for quality analysis of special coffees in cold storage
spellingShingle Simulation of robust adaptive regression multi-level models for quality analysis of special coffees in cold storage
MANOEL, I. dos S.
Regression analysis
Cold storage
Coffea
title_short Simulation of robust adaptive regression multi-level models for quality analysis of special coffees in cold storage
title_full Simulation of robust adaptive regression multi-level models for quality analysis of special coffees in cold storage
title_fullStr Simulation of robust adaptive regression multi-level models for quality analysis of special coffees in cold storage
title_full_unstemmed Simulation of robust adaptive regression multi-level models for quality analysis of special coffees in cold storage
title_sort Simulation of robust adaptive regression multi-level models for quality analysis of special coffees in cold storage
author MANOEL, I. dos S.
author_facet MANOEL, I. dos S.
RESENDE, M.
SOUSA, P. H. A.
ROSA, S. D. V. F. da
CIRILLO, M. A.
author_role author
author2 RESENDE, M.
SOUSA, P. H. A.
ROSA, S. D. V. F. da
CIRILLO, M. A.
author2_role author
author
author
author
dc.contributor.none.fl_str_mv IURI DOS SANTOS MANOEL, UNIVERSIDADE FEDERAL DE LAVRAS; MARIANA RESENDE, UNIVERSIDADE FEDERAL DE LAVRAS; PEDRO HERIQUE ASSIS SOUSA, UNIVERSIDADE FEDERAL DE LAVRAS; STTELA DELLYZETE VEIGA F DA ROSA, CNPCa; MARCELO ANGELO CIRILLO, UNIVERSIDADE FEDERAL DE LAVRAS.
dc.contributor.author.fl_str_mv MANOEL, I. dos S.
RESENDE, M.
SOUSA, P. H. A.
ROSA, S. D. V. F. da
CIRILLO, M. A.
dc.subject.por.fl_str_mv Regression analysis
Cold storage
Coffea
topic Regression analysis
Cold storage
Coffea
description ABSTRACT. Numerous factors contribute to specialty coffee quality, storage and cooling conditions. We may therefore assume that sensory evaluation results can be corrupted by measurement errors, especially when cuppers are not trained, leading to occurrence of observation outliers. Therefore, this study aimed to propose simulation scenarios considering parametric values of multilevel model fit with robust adaptive regressions to the presence of outliers in a real experiment with processed and unprocessed coffee beans stored at different times and temperatures. In this context, we considered computationally simulated scenarios in which sensory scoring errors can be made at L = 5 and 10 units. The proposed method was feasible for the sensory scoring of an experiment of coffee storage conditions and cooled environments. This is because it included robust characteristics of samples evaluated with up to 30% of outliers.
publishDate 2023
dc.date.none.fl_str_mv 2023-11-09T20:46:12Z
2023-11-09T20:46:12Z
2023-11-09
2024
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv Acta Scientiarum. Technology, v. 46, n. 1, e59135, 2024.
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1158148
https://doi.org/10.4025/actascitechnol.v46i1.59135
identifier_str_mv Acta Scientiarum. Technology, v. 46, n. 1, e59135, 2024.
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/1158148
https://doi.org/10.4025/actascitechnol.v46i1.59135
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 10 p.
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1794503551905431552