Simulation of robust adaptive regression multi-level models for quality analysis of special coffees in cold storage
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
Texto Completo: | http://www.alice.cnptia.embrapa.br/alice/handle/doc/1158148 https://doi.org/10.4025/actascitechnol.v46i1.59135 |
Resumo: | ABSTRACT. Numerous factors contribute to specialty coffee quality, storage and cooling conditions. We may therefore assume that sensory evaluation results can be corrupted by measurement errors, especially when cuppers are not trained, leading to occurrence of observation outliers. Therefore, this study aimed to propose simulation scenarios considering parametric values of multilevel model fit with robust adaptive regressions to the presence of outliers in a real experiment with processed and unprocessed coffee beans stored at different times and temperatures. In this context, we considered computationally simulated scenarios in which sensory scoring errors can be made at L = 5 and 10 units. The proposed method was feasible for the sensory scoring of an experiment of coffee storage conditions and cooled environments. This is because it included robust characteristics of samples evaluated with up to 30% of outliers. |
id |
EMBR_442fe5c09abd7c74a48c93a11d43cd44 |
---|---|
oai_identifier_str |
oai:www.alice.cnptia.embrapa.br:doc/1158148 |
network_acronym_str |
EMBR |
network_name_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository_id_str |
2154 |
spelling |
Simulation of robust adaptive regression multi-level models for quality analysis of special coffees in cold storageRegression analysisCold storageCoffeaABSTRACT. Numerous factors contribute to specialty coffee quality, storage and cooling conditions. We may therefore assume that sensory evaluation results can be corrupted by measurement errors, especially when cuppers are not trained, leading to occurrence of observation outliers. Therefore, this study aimed to propose simulation scenarios considering parametric values of multilevel model fit with robust adaptive regressions to the presence of outliers in a real experiment with processed and unprocessed coffee beans stored at different times and temperatures. In this context, we considered computationally simulated scenarios in which sensory scoring errors can be made at L = 5 and 10 units. The proposed method was feasible for the sensory scoring of an experiment of coffee storage conditions and cooled environments. This is because it included robust characteristics of samples evaluated with up to 30% of outliers.IURI DOS SANTOS MANOEL, UNIVERSIDADE FEDERAL DE LAVRAS; MARIANA RESENDE, UNIVERSIDADE FEDERAL DE LAVRAS; PEDRO HERIQUE ASSIS SOUSA, UNIVERSIDADE FEDERAL DE LAVRAS; STTELA DELLYZETE VEIGA F DA ROSA, CNPCa; MARCELO ANGELO CIRILLO, UNIVERSIDADE FEDERAL DE LAVRAS.MANOEL, I. dos S.RESENDE, M.SOUSA, P. H. A.ROSA, S. D. V. F. daCIRILLO, M. A.2023-11-09T20:46:12Z2023-11-09T20:46:12Z2023-11-092024info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article10 p.Acta Scientiarum. Technology, v. 46, n. 1, e59135, 2024.http://www.alice.cnptia.embrapa.br/alice/handle/doc/1158148https://doi.org/10.4025/actascitechnol.v46i1.59135enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2023-11-09T20:46:12Zoai:www.alice.cnptia.embrapa.br:doc/1158148Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542023-11-09T20:46:12falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542023-11-09T20:46:12Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
Simulation of robust adaptive regression multi-level models for quality analysis of special coffees in cold storage |
title |
Simulation of robust adaptive regression multi-level models for quality analysis of special coffees in cold storage |
spellingShingle |
Simulation of robust adaptive regression multi-level models for quality analysis of special coffees in cold storage MANOEL, I. dos S. Regression analysis Cold storage Coffea |
title_short |
Simulation of robust adaptive regression multi-level models for quality analysis of special coffees in cold storage |
title_full |
Simulation of robust adaptive regression multi-level models for quality analysis of special coffees in cold storage |
title_fullStr |
Simulation of robust adaptive regression multi-level models for quality analysis of special coffees in cold storage |
title_full_unstemmed |
Simulation of robust adaptive regression multi-level models for quality analysis of special coffees in cold storage |
title_sort |
Simulation of robust adaptive regression multi-level models for quality analysis of special coffees in cold storage |
author |
MANOEL, I. dos S. |
author_facet |
MANOEL, I. dos S. RESENDE, M. SOUSA, P. H. A. ROSA, S. D. V. F. da CIRILLO, M. A. |
author_role |
author |
author2 |
RESENDE, M. SOUSA, P. H. A. ROSA, S. D. V. F. da CIRILLO, M. A. |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
IURI DOS SANTOS MANOEL, UNIVERSIDADE FEDERAL DE LAVRAS; MARIANA RESENDE, UNIVERSIDADE FEDERAL DE LAVRAS; PEDRO HERIQUE ASSIS SOUSA, UNIVERSIDADE FEDERAL DE LAVRAS; STTELA DELLYZETE VEIGA F DA ROSA, CNPCa; MARCELO ANGELO CIRILLO, UNIVERSIDADE FEDERAL DE LAVRAS. |
dc.contributor.author.fl_str_mv |
MANOEL, I. dos S. RESENDE, M. SOUSA, P. H. A. ROSA, S. D. V. F. da CIRILLO, M. A. |
dc.subject.por.fl_str_mv |
Regression analysis Cold storage Coffea |
topic |
Regression analysis Cold storage Coffea |
description |
ABSTRACT. Numerous factors contribute to specialty coffee quality, storage and cooling conditions. We may therefore assume that sensory evaluation results can be corrupted by measurement errors, especially when cuppers are not trained, leading to occurrence of observation outliers. Therefore, this study aimed to propose simulation scenarios considering parametric values of multilevel model fit with robust adaptive regressions to the presence of outliers in a real experiment with processed and unprocessed coffee beans stored at different times and temperatures. In this context, we considered computationally simulated scenarios in which sensory scoring errors can be made at L = 5 and 10 units. The proposed method was feasible for the sensory scoring of an experiment of coffee storage conditions and cooled environments. This is because it included robust characteristics of samples evaluated with up to 30% of outliers. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-11-09T20:46:12Z 2023-11-09T20:46:12Z 2023-11-09 2024 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Acta Scientiarum. Technology, v. 46, n. 1, e59135, 2024. http://www.alice.cnptia.embrapa.br/alice/handle/doc/1158148 https://doi.org/10.4025/actascitechnol.v46i1.59135 |
identifier_str_mv |
Acta Scientiarum. Technology, v. 46, n. 1, e59135, 2024. |
url |
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1158148 https://doi.org/10.4025/actascitechnol.v46i1.59135 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
10 p. |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
collection |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository.name.fl_str_mv |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
cg-riaa@embrapa.br |
_version_ |
1794503551905431552 |