Intense pasture management in Brazil in an integrated crop-livestock system simulated by the DayCent model.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
Texto Completo: | http://www.alice.cnptia.embrapa.br/alice/handle/doc/1141004 https://doi.org/10.3390/su14063517 |
Resumo: | Abstract. Process-based models (PBM) are important tools for understanding the benefits of Integrated Crop-Livestock Systems (ICLS), such as increasing land productivity and improving environmental conditions. PBM can provide insights into the contribution of agricultural production to climate change and help identify potential greenhouse gas (GHG) mitigation and carbon sequestration options. Rehabilitation of degraded lands is a key strategy for achieving food security goals and can reduce the need for new agricultural land. This study focused on the calibration and validation of the DayCent PBM for a typical ICLS adopted in Brazil from 2018 to 2020. We also present the DayCent parametrization for two forage species (ruzigrass and millet) grown simultaneously, bringing some innovation in the modeling challenges. We used aboveground biomass to calibrate the model, randomly selecting data from 70% of the paddocks in the study area. The calibration obtained a coefficient of determination (R2) of 0.69 and a relative RMSE of 37.0%. During the validation, we used other variables (CO2 flux, grain biomass, and soil water content) measured in the ICLS and performed a double validation for plant growth to evaluate the robustness of the model in terms of generalization. R2 validations ranged from 0.61 to 0.73, and relative RMSE from 11.3 to 48.3%. Despite the complexity and diversity of ICLS results show that DayCent can be used to model ICLS, which is an important step for future regional analyses and large-scale evaluations of the impacts of ICLS. |
id |
EMBR_468a0762d8cbe0693f03c38fc4f8c558 |
---|---|
oai_identifier_str |
oai:www.alice.cnptia.embrapa.br:doc/1141004 |
network_acronym_str |
EMBR |
network_name_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository_id_str |
2154 |
spelling |
Intense pasture management in Brazil in an integrated crop-livestock system simulated by the DayCent model.Modelo biogeoquímicoPastagem tropicalSistemas Integrados Lavoura-PecuáriaManejo de pastagensMixed pastureBiogeochemical modelIntegrated Crop-Livestock SystemsTropical pasturePastagem MistaSojaSolo ArenosoSandy soilsSoybeansAbstract. Process-based models (PBM) are important tools for understanding the benefits of Integrated Crop-Livestock Systems (ICLS), such as increasing land productivity and improving environmental conditions. PBM can provide insights into the contribution of agricultural production to climate change and help identify potential greenhouse gas (GHG) mitigation and carbon sequestration options. Rehabilitation of degraded lands is a key strategy for achieving food security goals and can reduce the need for new agricultural land. This study focused on the calibration and validation of the DayCent PBM for a typical ICLS adopted in Brazil from 2018 to 2020. We also present the DayCent parametrization for two forage species (ruzigrass and millet) grown simultaneously, bringing some innovation in the modeling challenges. We used aboveground biomass to calibrate the model, randomly selecting data from 70% of the paddocks in the study area. The calibration obtained a coefficient of determination (R2) of 0.69 and a relative RMSE of 37.0%. During the validation, we used other variables (CO2 flux, grain biomass, and soil water content) measured in the ICLS and performed a double validation for plant growth to evaluate the robustness of the model in terms of generalization. R2 validations ranged from 0.61 to 0.73, and relative RMSE from 11.3 to 48.3%. Despite the complexity and diversity of ICLS results show that DayCent can be used to model ICLS, which is an important step for future regional analyses and large-scale evaluations of the impacts of ICLS.Article 3517.YANE FREITAS SILVA, FEAGRI/UNICAMP; RAFAEL VASCONCELOS VALADARES, NIPE/UNICAMP; HENRIQUE BORIOLO DIAS, NIPE/UNICAMP; SANTIAGO VIANNA CUADRA, CNPTIA; ELEANOR E. CAMPBELL, UNIVERSITY OF NEW HAMPSHIRE; RUBENS AUGUSTO CAMARGO LAMPARELLI, NIPE/UNICAMP; EDEMAR MORO, UNOESTE; RAFAEL BATTISTI, UFG; MARCELO R. ALVES, UNOESTE; PAULO S. G. MAGALHÃES, NIPE/UNICAMP; GLEYCE KELLY DANTAS ARAÚJO FIGUEIREDO, FEAGRI/UNICAMP.SILVA, Y. F.VALADARES, R. V.DIAS, H. B.CUADRA, S. V.CAMPBELL, E. E.LAMPARELLI, R. A. C.MORO, E.BATTISTI, R.ALVES, M. R.MAGALHÃES, P. S. G.FIGUEIREDO, G. K. D. A.2022-03-17T18:00:45Z2022-03-17T18:00:45Z2022-03-172022info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleSustainability, v. 14, n. 6, p. 1-24, Mar. 2022.http://www.alice.cnptia.embrapa.br/alice/handle/doc/1141004https://doi.org/10.3390/su14063517enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2022-03-17T18:00:55Zoai:www.alice.cnptia.embrapa.br:doc/1141004Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542022-03-17T18:00:55Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
Intense pasture management in Brazil in an integrated crop-livestock system simulated by the DayCent model. |
title |
Intense pasture management in Brazil in an integrated crop-livestock system simulated by the DayCent model. |
spellingShingle |
Intense pasture management in Brazil in an integrated crop-livestock system simulated by the DayCent model. SILVA, Y. F. Modelo biogeoquímico Pastagem tropical Sistemas Integrados Lavoura-Pecuária Manejo de pastagens Mixed pasture Biogeochemical model Integrated Crop-Livestock Systems Tropical pasture Pastagem Mista Soja Solo Arenoso Sandy soils Soybeans |
title_short |
Intense pasture management in Brazil in an integrated crop-livestock system simulated by the DayCent model. |
title_full |
Intense pasture management in Brazil in an integrated crop-livestock system simulated by the DayCent model. |
title_fullStr |
Intense pasture management in Brazil in an integrated crop-livestock system simulated by the DayCent model. |
title_full_unstemmed |
Intense pasture management in Brazil in an integrated crop-livestock system simulated by the DayCent model. |
title_sort |
Intense pasture management in Brazil in an integrated crop-livestock system simulated by the DayCent model. |
author |
SILVA, Y. F. |
author_facet |
SILVA, Y. F. VALADARES, R. V. DIAS, H. B. CUADRA, S. V. CAMPBELL, E. E. LAMPARELLI, R. A. C. MORO, E. BATTISTI, R. ALVES, M. R. MAGALHÃES, P. S. G. FIGUEIREDO, G. K. D. A. |
author_role |
author |
author2 |
VALADARES, R. V. DIAS, H. B. CUADRA, S. V. CAMPBELL, E. E. LAMPARELLI, R. A. C. MORO, E. BATTISTI, R. ALVES, M. R. MAGALHÃES, P. S. G. FIGUEIREDO, G. K. D. A. |
author2_role |
author author author author author author author author author author |
dc.contributor.none.fl_str_mv |
YANE FREITAS SILVA, FEAGRI/UNICAMP; RAFAEL VASCONCELOS VALADARES, NIPE/UNICAMP; HENRIQUE BORIOLO DIAS, NIPE/UNICAMP; SANTIAGO VIANNA CUADRA, CNPTIA; ELEANOR E. CAMPBELL, UNIVERSITY OF NEW HAMPSHIRE; RUBENS AUGUSTO CAMARGO LAMPARELLI, NIPE/UNICAMP; EDEMAR MORO, UNOESTE; RAFAEL BATTISTI, UFG; MARCELO R. ALVES, UNOESTE; PAULO S. G. MAGALHÃES, NIPE/UNICAMP; GLEYCE KELLY DANTAS ARAÚJO FIGUEIREDO, FEAGRI/UNICAMP. |
dc.contributor.author.fl_str_mv |
SILVA, Y. F. VALADARES, R. V. DIAS, H. B. CUADRA, S. V. CAMPBELL, E. E. LAMPARELLI, R. A. C. MORO, E. BATTISTI, R. ALVES, M. R. MAGALHÃES, P. S. G. FIGUEIREDO, G. K. D. A. |
dc.subject.por.fl_str_mv |
Modelo biogeoquímico Pastagem tropical Sistemas Integrados Lavoura-Pecuária Manejo de pastagens Mixed pasture Biogeochemical model Integrated Crop-Livestock Systems Tropical pasture Pastagem Mista Soja Solo Arenoso Sandy soils Soybeans |
topic |
Modelo biogeoquímico Pastagem tropical Sistemas Integrados Lavoura-Pecuária Manejo de pastagens Mixed pasture Biogeochemical model Integrated Crop-Livestock Systems Tropical pasture Pastagem Mista Soja Solo Arenoso Sandy soils Soybeans |
description |
Abstract. Process-based models (PBM) are important tools for understanding the benefits of Integrated Crop-Livestock Systems (ICLS), such as increasing land productivity and improving environmental conditions. PBM can provide insights into the contribution of agricultural production to climate change and help identify potential greenhouse gas (GHG) mitigation and carbon sequestration options. Rehabilitation of degraded lands is a key strategy for achieving food security goals and can reduce the need for new agricultural land. This study focused on the calibration and validation of the DayCent PBM for a typical ICLS adopted in Brazil from 2018 to 2020. We also present the DayCent parametrization for two forage species (ruzigrass and millet) grown simultaneously, bringing some innovation in the modeling challenges. We used aboveground biomass to calibrate the model, randomly selecting data from 70% of the paddocks in the study area. The calibration obtained a coefficient of determination (R2) of 0.69 and a relative RMSE of 37.0%. During the validation, we used other variables (CO2 flux, grain biomass, and soil water content) measured in the ICLS and performed a double validation for plant growth to evaluate the robustness of the model in terms of generalization. R2 validations ranged from 0.61 to 0.73, and relative RMSE from 11.3 to 48.3%. Despite the complexity and diversity of ICLS results show that DayCent can be used to model ICLS, which is an important step for future regional analyses and large-scale evaluations of the impacts of ICLS. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-03-17T18:00:45Z 2022-03-17T18:00:45Z 2022-03-17 2022 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Sustainability, v. 14, n. 6, p. 1-24, Mar. 2022. http://www.alice.cnptia.embrapa.br/alice/handle/doc/1141004 https://doi.org/10.3390/su14063517 |
identifier_str_mv |
Sustainability, v. 14, n. 6, p. 1-24, Mar. 2022. |
url |
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1141004 https://doi.org/10.3390/su14063517 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
collection |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository.name.fl_str_mv |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
cg-riaa@embrapa.br |
_version_ |
1817695632354181120 |