Genome-enabled prediction of breeding values for feedlot average daily weight gain in nelore cattle.

Detalhes bibliográficos
Autor(a) principal: SOMAVILLA, A. L.
Data de Publicação: 2017
Outros Autores: REGITANO, L. C. de A., ROSA, G. J. M., MOKRY, F. B., MUDADU, M. de A., TIZIOTO, P. C., OLIVEIRA, P. S. N. de, SOUZA, M. M. de, COUTINHO, L. L., MUNARI, D. P.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1070097
https://doi.org/10.1534/g3.117.041442
Resumo: Nelore is the most economically important cattle breed in Brazil, and the use of genetically improved animals has contributed to increase beef production efficiency. The Brazilian beef feedlot industry has grown considerably in the last decade, so the selection of animals with higher growth rates on feedlot has become quite important. Genomic selection could be used to reduce generation intervals and improve the rate of genetic gains. The aim of this study was to evaluate the prediction of genomic estimated breeding values for average daily gain in 718 feedlot-finished Nelore steers. Analyses of three Bayesian model specifications (Bayesian GBLUP, BayesA, and BayesCπ) were performed with four genotype panels (Illumina BovineHD BeadChip, TagSNPs, GeneSeek High and Low-density indicus). Estimates of Pearson correlations, regression coefficients, and mean squared errors were used to assess accuracy and bias of predictions. Overall, the BayesCπ model resulted in less biased predictions. Accuracies ranged from 0.18 to 0.27, which are reasonable values given the heritability estimates (from 0.40 to 0.44) and sample size (568 animals in the training population). Furthermore, results from Bos taurus indicus panels were as informative as those from Illumina BovineHD, indicating that they could be used to implement genomic selection at lower costs.
id EMBR_48daf505242e30169173179ad27f84a4
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/1070097
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling Genome-enabled prediction of breeding values for feedlot average daily weight gain in nelore cattle.Genomic selectionBos taurus indicusGrowthNelore is the most economically important cattle breed in Brazil, and the use of genetically improved animals has contributed to increase beef production efficiency. The Brazilian beef feedlot industry has grown considerably in the last decade, so the selection of animals with higher growth rates on feedlot has become quite important. Genomic selection could be used to reduce generation intervals and improve the rate of genetic gains. The aim of this study was to evaluate the prediction of genomic estimated breeding values for average daily gain in 718 feedlot-finished Nelore steers. Analyses of three Bayesian model specifications (Bayesian GBLUP, BayesA, and BayesCπ) were performed with four genotype panels (Illumina BovineHD BeadChip, TagSNPs, GeneSeek High and Low-density indicus). Estimates of Pearson correlations, regression coefficients, and mean squared errors were used to assess accuracy and bias of predictions. Overall, the BayesCπ model resulted in less biased predictions. Accuracies ranged from 0.18 to 0.27, which are reasonable values given the heritability estimates (from 0.40 to 0.44) and sample size (568 animals in the training population). Furthermore, results from Bos taurus indicus panels were as informative as those from Illumina BovineHD, indicating that they could be used to implement genomic selection at lower costs.Adriana Luiza Somavilla, Unesp; LUCIANA CORREIA DE ALMEIDA REGITANO, CPPSE; Guilherme Jordão Magalhães Rosa, University of Wisconsin; Fabiana Barichello Mokry, UFSCar; MAURICIO DE ALVARENGA MUDADU, CNPTIA; Polyana Cristine Tizioto, UFSCar; Priscila Silva Neubern de Oliveira, UFSCar; Marcela Maria de Souza, UFSCar; Luiz Lehmann Coutinho, USP; Danísio Prado Munari, Unesp.SOMAVILLA, A. L.REGITANO, L. C. de A.ROSA, G. J. M.MOKRY, F. B.MUDADU, M. de A.TIZIOTO, P. C.OLIVEIRA, P. S. N. deSOUZA, M. M. deCOUTINHO, L. L.MUNARI, D. P.2019-06-15T00:40:05Z2019-06-15T00:40:05Z2017-05-2620172019-06-15T00:40:05Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleG3: Genes, Genomes, Genetics, v. 7, p. 1-17, 2017.http://www.alice.cnptia.embrapa.br/alice/handle/doc/1070097https://doi.org/10.1534/g3.117.041442enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2019-06-15T00:40:11Zoai:www.alice.cnptia.embrapa.br:doc/1070097Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542019-06-15T00:40:11falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542019-06-15T00:40:11Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Genome-enabled prediction of breeding values for feedlot average daily weight gain in nelore cattle.
title Genome-enabled prediction of breeding values for feedlot average daily weight gain in nelore cattle.
spellingShingle Genome-enabled prediction of breeding values for feedlot average daily weight gain in nelore cattle.
SOMAVILLA, A. L.
Genomic selection
Bos taurus indicus
Growth
title_short Genome-enabled prediction of breeding values for feedlot average daily weight gain in nelore cattle.
title_full Genome-enabled prediction of breeding values for feedlot average daily weight gain in nelore cattle.
title_fullStr Genome-enabled prediction of breeding values for feedlot average daily weight gain in nelore cattle.
title_full_unstemmed Genome-enabled prediction of breeding values for feedlot average daily weight gain in nelore cattle.
title_sort Genome-enabled prediction of breeding values for feedlot average daily weight gain in nelore cattle.
author SOMAVILLA, A. L.
author_facet SOMAVILLA, A. L.
REGITANO, L. C. de A.
ROSA, G. J. M.
MOKRY, F. B.
MUDADU, M. de A.
TIZIOTO, P. C.
OLIVEIRA, P. S. N. de
SOUZA, M. M. de
COUTINHO, L. L.
MUNARI, D. P.
author_role author
author2 REGITANO, L. C. de A.
ROSA, G. J. M.
MOKRY, F. B.
MUDADU, M. de A.
TIZIOTO, P. C.
OLIVEIRA, P. S. N. de
SOUZA, M. M. de
COUTINHO, L. L.
MUNARI, D. P.
author2_role author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Adriana Luiza Somavilla, Unesp; LUCIANA CORREIA DE ALMEIDA REGITANO, CPPSE; Guilherme Jordão Magalhães Rosa, University of Wisconsin; Fabiana Barichello Mokry, UFSCar; MAURICIO DE ALVARENGA MUDADU, CNPTIA; Polyana Cristine Tizioto, UFSCar; Priscila Silva Neubern de Oliveira, UFSCar; Marcela Maria de Souza, UFSCar; Luiz Lehmann Coutinho, USP; Danísio Prado Munari, Unesp.
dc.contributor.author.fl_str_mv SOMAVILLA, A. L.
REGITANO, L. C. de A.
ROSA, G. J. M.
MOKRY, F. B.
MUDADU, M. de A.
TIZIOTO, P. C.
OLIVEIRA, P. S. N. de
SOUZA, M. M. de
COUTINHO, L. L.
MUNARI, D. P.
dc.subject.por.fl_str_mv Genomic selection
Bos taurus indicus
Growth
topic Genomic selection
Bos taurus indicus
Growth
description Nelore is the most economically important cattle breed in Brazil, and the use of genetically improved animals has contributed to increase beef production efficiency. The Brazilian beef feedlot industry has grown considerably in the last decade, so the selection of animals with higher growth rates on feedlot has become quite important. Genomic selection could be used to reduce generation intervals and improve the rate of genetic gains. The aim of this study was to evaluate the prediction of genomic estimated breeding values for average daily gain in 718 feedlot-finished Nelore steers. Analyses of three Bayesian model specifications (Bayesian GBLUP, BayesA, and BayesCπ) were performed with four genotype panels (Illumina BovineHD BeadChip, TagSNPs, GeneSeek High and Low-density indicus). Estimates of Pearson correlations, regression coefficients, and mean squared errors were used to assess accuracy and bias of predictions. Overall, the BayesCπ model resulted in less biased predictions. Accuracies ranged from 0.18 to 0.27, which are reasonable values given the heritability estimates (from 0.40 to 0.44) and sample size (568 animals in the training population). Furthermore, results from Bos taurus indicus panels were as informative as those from Illumina BovineHD, indicating that they could be used to implement genomic selection at lower costs.
publishDate 2017
dc.date.none.fl_str_mv 2017-05-26
2017
2019-06-15T00:40:05Z
2019-06-15T00:40:05Z
2019-06-15T00:40:05Z
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv G3: Genes, Genomes, Genetics, v. 7, p. 1-17, 2017.
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1070097
https://doi.org/10.1534/g3.117.041442
identifier_str_mv G3: Genes, Genomes, Genetics, v. 7, p. 1-17, 2017.
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/1070097
https://doi.org/10.1534/g3.117.041442
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1794503476092338176