O método Bootstrap e sua aplicação em análise de dados agroflorestais com variáveis aleatórias do tipo razão.
Autor(a) principal: | |
---|---|
Data de Publicação: | 1996 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
Texto Completo: | http://www.alice.cnptia.embrapa.br/alice/handle/doc/342020 |
Resumo: | o conceito de produção sustentada, baseada no princípio de diversificação de culturas é consolidado através dos sistemas agroflorestais, que é a denominação recente para os cultivos consorciados que envolvem um componente arbóreo, culturas agrícolas e/ou animais. Devido à possibilidade de múltiplas interações entre os componentes, a análise e a interpretação dos dados experimentais de um sistema agroflorestal pode tornar-se complexa. Uma abordagem muito encontrada na literatura, para análise de cultivos consorciados é feita através do LER (Land Equivalent Ratio), que representa uma medida de equivalência do uso da terra do consórcio em relação ao monocultivo. Do ponto de vista estatístico, o LER representa uma variável aleatória formada pela razão de duas variáveis aleatórias e, conseqüentemente, sua distribuição de probabilidades nem sempre segue a distribuição normal. Esse fato, impossibilita a aplicação dos métodos paramétricos, comumente empregados na experimentação agronômica. Os métodos computacionalmente intensivos como "Jackknife" e "Bootstrap" possibilitam análise estatísticas livres de suposições de modelos teóricos, tornando possível a exploração das propriedades amostrais, independentemente de suas formas analíticas. o método "Bootstrap" é mais versátil que o método "Jackknife" e pode ser implementado facilmente, tanto na forma não-paramétrica quanto paramétrica, para uma grande variedades de situações. A idéia básica dos procedimentos "Bootstrap" baseia-se no fato de se obter uma distribuição empírica, que reproduza o mecanismo probabilístico gerador dos dados amostrais e assim, a partir de grande quantidades de reamostras, obtêm-se as estimativas das estatísticas de interesse. Encontra-se neste trabalho uma sucinta descrição do método "Jackknife". Os conceitos e algoritmos que envolvem os procedimentos "Bootstrap" não-paramétricos, são descritos e executados através de dados simulados. A análise de um sistema agroflorestal, com a variável aleatória LER, foi realizada com o uso dos procedimentos "Bootstrap" e através dos software SAS e S-PLUS obtiveram-se limites de confiança e teste de hipótese para os parâmetros populacionais. |
id |
EMBR_523eb4d66b7ec0354ec68746051ebc5a |
---|---|
oai_identifier_str |
oai:www.alice.cnptia.embrapa.br:doc/342020 |
network_acronym_str |
EMBR |
network_name_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository_id_str |
2154 |
spelling |
O método Bootstrap e sua aplicação em análise de dados agroflorestais com variáveis aleatórias do tipo razão.AgroflorestaAnálise EstatísticaEstatísticaFlorestaagroforestryforestrystatistical analysisstatisticso conceito de produção sustentada, baseada no princípio de diversificação de culturas é consolidado através dos sistemas agroflorestais, que é a denominação recente para os cultivos consorciados que envolvem um componente arbóreo, culturas agrícolas e/ou animais. Devido à possibilidade de múltiplas interações entre os componentes, a análise e a interpretação dos dados experimentais de um sistema agroflorestal pode tornar-se complexa. Uma abordagem muito encontrada na literatura, para análise de cultivos consorciados é feita através do LER (Land Equivalent Ratio), que representa uma medida de equivalência do uso da terra do consórcio em relação ao monocultivo. Do ponto de vista estatístico, o LER representa uma variável aleatória formada pela razão de duas variáveis aleatórias e, conseqüentemente, sua distribuição de probabilidades nem sempre segue a distribuição normal. Esse fato, impossibilita a aplicação dos métodos paramétricos, comumente empregados na experimentação agronômica. Os métodos computacionalmente intensivos como "Jackknife" e "Bootstrap" possibilitam análise estatísticas livres de suposições de modelos teóricos, tornando possível a exploração das propriedades amostrais, independentemente de suas formas analíticas. o método "Bootstrap" é mais versátil que o método "Jackknife" e pode ser implementado facilmente, tanto na forma não-paramétrica quanto paramétrica, para uma grande variedades de situações. A idéia básica dos procedimentos "Bootstrap" baseia-se no fato de se obter uma distribuição empírica, que reproduza o mecanismo probabilístico gerador dos dados amostrais e assim, a partir de grande quantidades de reamostras, obtêm-se as estimativas das estatísticas de interesse. Encontra-se neste trabalho uma sucinta descrição do método "Jackknife". Os conceitos e algoritmos que envolvem os procedimentos "Bootstrap" não-paramétricos, são descritos e executados através de dados simulados. A análise de um sistema agroflorestal, com a variável aleatória LER, foi realizada com o uso dos procedimentos "Bootstrap" e através dos software SAS e S-PLUS obtiveram-se limites de confiança e teste de hipótese para os parâmetros populacionais.Dissertação (Mestrado) - Escola Superior de Agricultura Luiz de Queiroz, Piracicaba. Orientador: Hilton Thadeu Zarate do Couto.ANTONIO CLAUDIO ALMEIDA DE CARVALHO, CPAF-AP.CARVALHO, A. C. A. de2022-09-30T19:17:13Z2022-09-30T19:17:13Z1998-05-261996info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis88 f.1996.http://www.alice.cnptia.embrapa.br/alice/handle/doc/342020porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2022-09-30T19:17:20Zoai:www.alice.cnptia.embrapa.br:doc/342020Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542022-09-30T19:17:20falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542022-09-30T19:17:20Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
O método Bootstrap e sua aplicação em análise de dados agroflorestais com variáveis aleatórias do tipo razão. |
title |
O método Bootstrap e sua aplicação em análise de dados agroflorestais com variáveis aleatórias do tipo razão. |
spellingShingle |
O método Bootstrap e sua aplicação em análise de dados agroflorestais com variáveis aleatórias do tipo razão. CARVALHO, A. C. A. de Agrofloresta Análise Estatística Estatística Floresta agroforestry forestry statistical analysis statistics |
title_short |
O método Bootstrap e sua aplicação em análise de dados agroflorestais com variáveis aleatórias do tipo razão. |
title_full |
O método Bootstrap e sua aplicação em análise de dados agroflorestais com variáveis aleatórias do tipo razão. |
title_fullStr |
O método Bootstrap e sua aplicação em análise de dados agroflorestais com variáveis aleatórias do tipo razão. |
title_full_unstemmed |
O método Bootstrap e sua aplicação em análise de dados agroflorestais com variáveis aleatórias do tipo razão. |
title_sort |
O método Bootstrap e sua aplicação em análise de dados agroflorestais com variáveis aleatórias do tipo razão. |
author |
CARVALHO, A. C. A. de |
author_facet |
CARVALHO, A. C. A. de |
author_role |
author |
dc.contributor.none.fl_str_mv |
ANTONIO CLAUDIO ALMEIDA DE CARVALHO, CPAF-AP. |
dc.contributor.author.fl_str_mv |
CARVALHO, A. C. A. de |
dc.subject.por.fl_str_mv |
Agrofloresta Análise Estatística Estatística Floresta agroforestry forestry statistical analysis statistics |
topic |
Agrofloresta Análise Estatística Estatística Floresta agroforestry forestry statistical analysis statistics |
description |
o conceito de produção sustentada, baseada no princípio de diversificação de culturas é consolidado através dos sistemas agroflorestais, que é a denominação recente para os cultivos consorciados que envolvem um componente arbóreo, culturas agrícolas e/ou animais. Devido à possibilidade de múltiplas interações entre os componentes, a análise e a interpretação dos dados experimentais de um sistema agroflorestal pode tornar-se complexa. Uma abordagem muito encontrada na literatura, para análise de cultivos consorciados é feita através do LER (Land Equivalent Ratio), que representa uma medida de equivalência do uso da terra do consórcio em relação ao monocultivo. Do ponto de vista estatístico, o LER representa uma variável aleatória formada pela razão de duas variáveis aleatórias e, conseqüentemente, sua distribuição de probabilidades nem sempre segue a distribuição normal. Esse fato, impossibilita a aplicação dos métodos paramétricos, comumente empregados na experimentação agronômica. Os métodos computacionalmente intensivos como "Jackknife" e "Bootstrap" possibilitam análise estatísticas livres de suposições de modelos teóricos, tornando possível a exploração das propriedades amostrais, independentemente de suas formas analíticas. o método "Bootstrap" é mais versátil que o método "Jackknife" e pode ser implementado facilmente, tanto na forma não-paramétrica quanto paramétrica, para uma grande variedades de situações. A idéia básica dos procedimentos "Bootstrap" baseia-se no fato de se obter uma distribuição empírica, que reproduza o mecanismo probabilístico gerador dos dados amostrais e assim, a partir de grande quantidades de reamostras, obtêm-se as estimativas das estatísticas de interesse. Encontra-se neste trabalho uma sucinta descrição do método "Jackknife". Os conceitos e algoritmos que envolvem os procedimentos "Bootstrap" não-paramétricos, são descritos e executados através de dados simulados. A análise de um sistema agroflorestal, com a variável aleatória LER, foi realizada com o uso dos procedimentos "Bootstrap" e através dos software SAS e S-PLUS obtiveram-se limites de confiança e teste de hipótese para os parâmetros populacionais. |
publishDate |
1996 |
dc.date.none.fl_str_mv |
1996 1998-05-26 2022-09-30T19:17:13Z 2022-09-30T19:17:13Z |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
1996. http://www.alice.cnptia.embrapa.br/alice/handle/doc/342020 |
identifier_str_mv |
1996. |
url |
http://www.alice.cnptia.embrapa.br/alice/handle/doc/342020 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
88 f. |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
collection |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository.name.fl_str_mv |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
cg-riaa@embrapa.br |
_version_ |
1794503532442812416 |