Predictive models to estimate carbon stocks in agroforestry systems.

Detalhes bibliográficos
Autor(a) principal: MARÇAL, M. F. M.
Data de Publicação: 2021
Outros Autores: SOUZA, Z. M. de, TAVARES, R. L. M., FARHATE, C. V. V., OLIVEIRA, S. R. de M., GALINDO, F. S.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1134318
https://doi.org/10.3390/f12091240
Resumo: Abstract: This study aims to assess the carbon stock in a pasture area and fragment of forest in natural regeneration, given the importance of agroforestry systems in mitigating gas emissions which contribute to the greenhouse effect, as well as promoting the maintenance of agricultural productivity. Our other goal was to predict the carbon stock, according to different land use systems, from physical and chemical soil variables using the Random Forest algorithm. We carried out our study at an Entisols Quartzipsamments area with a completely randomized experimental design: four treatments and six replites. The treatments consisted of the following: (i) an agroforestry system developed for livestock, (ii) an agroforestry system developed for fruit culture, (iii) a conventional pasture, and (iv) a forest fragment. Deformed and undeformed soil samples were collected in order to analyze their physical and chemical properties across two consecutive agricultural years. The response variable, carbon stock, was subjected to a boxplot analysis and all the databases were used for a predictive modeling which in turn used the Random Forest algorithm. Results led to the conclusion that the agroforestry systems developed both for fruit culture and livestock, are more efficient at stocking carbon in the soil than the pasture area and forest fragment undergoing natural regeneration. Nitrogen stock and land use systems are the most important variables to estimate carbon stock from the physical and chemical variables of soil using the Random Forest algorithm. The predictive models generated from the physical and chemical variables of soil, as well as the Random Forest algorithm, presented a high potential for predicting soil carbon stock and are sensitive to different land use systems.
id EMBR_526a767bb095a549cf2605be555030de
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/1134318
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling Predictive models to estimate carbon stocks in agroforestry systems.Sequestro de carbonoSistemas de uso da terraMineração de dadosFloresta aleatóriaSistemas agroflorestaisModelo preditivoLand use systemsData mining techniqueRandom forestAgroforestry systemsPredictive modelsMatéria OrgânicaUso da TerraCarbon sequestrationLand useOrganic matterAgroforestryAbstract: This study aims to assess the carbon stock in a pasture area and fragment of forest in natural regeneration, given the importance of agroforestry systems in mitigating gas emissions which contribute to the greenhouse effect, as well as promoting the maintenance of agricultural productivity. Our other goal was to predict the carbon stock, according to different land use systems, from physical and chemical soil variables using the Random Forest algorithm. We carried out our study at an Entisols Quartzipsamments area with a completely randomized experimental design: four treatments and six replites. The treatments consisted of the following: (i) an agroforestry system developed for livestock, (ii) an agroforestry system developed for fruit culture, (iii) a conventional pasture, and (iv) a forest fragment. Deformed and undeformed soil samples were collected in order to analyze their physical and chemical properties across two consecutive agricultural years. The response variable, carbon stock, was subjected to a boxplot analysis and all the databases were used for a predictive modeling which in turn used the Random Forest algorithm. Results led to the conclusion that the agroforestry systems developed both for fruit culture and livestock, are more efficient at stocking carbon in the soil than the pasture area and forest fragment undergoing natural regeneration. Nitrogen stock and land use systems are the most important variables to estimate carbon stock from the physical and chemical variables of soil using the Random Forest algorithm. The predictive models generated from the physical and chemical variables of soil, as well as the Random Forest algorithm, presented a high potential for predicting soil carbon stock and are sensitive to different land use systems.Article 1240. Na publicação: Stanley Robson Medeiros Oliveira.MARIA FERNANDA MAGIONI MARÇAL, FEAGRI/UNICAMP; ZIGOMAR MENEZES DE SOUZA, FEAGRI/UNICAMP; ROSE LUIZA MORAES TAVARES, UNIVERSITY OF RIO VERDE; CAMILA VIANA VIEIRA FARHATE, FEAGRI/UNICAMP, UNESP; STANLEY ROBSON DE MEDEIROS OLIVEIRA, CNPTIA; FERNANDO SHINTATE GALINDO, FEAGRI/UNICAMP, UNESP.MARÇAL, M. F. M.SOUZA, Z. M. deTAVARES, R. L. M.FARHATE, C. V. V.OLIVEIRA, S. R. de M.GALINDO, F. S.2021-09-14T13:00:38Z2021-09-14T13:00:38Z2021-09-142021info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleForests, v. 12, n. 9, p. 1-15, Sept. 2021.http://www.alice.cnptia.embrapa.br/alice/handle/doc/1134318https://doi.org/10.3390/f12091240enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2021-09-14T13:00:48Zoai:www.alice.cnptia.embrapa.br:doc/1134318Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542021-09-14T13:00:48Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Predictive models to estimate carbon stocks in agroforestry systems.
title Predictive models to estimate carbon stocks in agroforestry systems.
spellingShingle Predictive models to estimate carbon stocks in agroforestry systems.
MARÇAL, M. F. M.
Sequestro de carbono
Sistemas de uso da terra
Mineração de dados
Floresta aleatória
Sistemas agroflorestais
Modelo preditivo
Land use systems
Data mining technique
Random forest
Agroforestry systems
Predictive models
Matéria Orgânica
Uso da Terra
Carbon sequestration
Land use
Organic matter
Agroforestry
title_short Predictive models to estimate carbon stocks in agroforestry systems.
title_full Predictive models to estimate carbon stocks in agroforestry systems.
title_fullStr Predictive models to estimate carbon stocks in agroforestry systems.
title_full_unstemmed Predictive models to estimate carbon stocks in agroforestry systems.
title_sort Predictive models to estimate carbon stocks in agroforestry systems.
author MARÇAL, M. F. M.
author_facet MARÇAL, M. F. M.
SOUZA, Z. M. de
TAVARES, R. L. M.
FARHATE, C. V. V.
OLIVEIRA, S. R. de M.
GALINDO, F. S.
author_role author
author2 SOUZA, Z. M. de
TAVARES, R. L. M.
FARHATE, C. V. V.
OLIVEIRA, S. R. de M.
GALINDO, F. S.
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv MARIA FERNANDA MAGIONI MARÇAL, FEAGRI/UNICAMP; ZIGOMAR MENEZES DE SOUZA, FEAGRI/UNICAMP; ROSE LUIZA MORAES TAVARES, UNIVERSITY OF RIO VERDE; CAMILA VIANA VIEIRA FARHATE, FEAGRI/UNICAMP, UNESP; STANLEY ROBSON DE MEDEIROS OLIVEIRA, CNPTIA; FERNANDO SHINTATE GALINDO, FEAGRI/UNICAMP, UNESP.
dc.contributor.author.fl_str_mv MARÇAL, M. F. M.
SOUZA, Z. M. de
TAVARES, R. L. M.
FARHATE, C. V. V.
OLIVEIRA, S. R. de M.
GALINDO, F. S.
dc.subject.por.fl_str_mv Sequestro de carbono
Sistemas de uso da terra
Mineração de dados
Floresta aleatória
Sistemas agroflorestais
Modelo preditivo
Land use systems
Data mining technique
Random forest
Agroforestry systems
Predictive models
Matéria Orgânica
Uso da Terra
Carbon sequestration
Land use
Organic matter
Agroforestry
topic Sequestro de carbono
Sistemas de uso da terra
Mineração de dados
Floresta aleatória
Sistemas agroflorestais
Modelo preditivo
Land use systems
Data mining technique
Random forest
Agroforestry systems
Predictive models
Matéria Orgânica
Uso da Terra
Carbon sequestration
Land use
Organic matter
Agroforestry
description Abstract: This study aims to assess the carbon stock in a pasture area and fragment of forest in natural regeneration, given the importance of agroforestry systems in mitigating gas emissions which contribute to the greenhouse effect, as well as promoting the maintenance of agricultural productivity. Our other goal was to predict the carbon stock, according to different land use systems, from physical and chemical soil variables using the Random Forest algorithm. We carried out our study at an Entisols Quartzipsamments area with a completely randomized experimental design: four treatments and six replites. The treatments consisted of the following: (i) an agroforestry system developed for livestock, (ii) an agroforestry system developed for fruit culture, (iii) a conventional pasture, and (iv) a forest fragment. Deformed and undeformed soil samples were collected in order to analyze their physical and chemical properties across two consecutive agricultural years. The response variable, carbon stock, was subjected to a boxplot analysis and all the databases were used for a predictive modeling which in turn used the Random Forest algorithm. Results led to the conclusion that the agroforestry systems developed both for fruit culture and livestock, are more efficient at stocking carbon in the soil than the pasture area and forest fragment undergoing natural regeneration. Nitrogen stock and land use systems are the most important variables to estimate carbon stock from the physical and chemical variables of soil using the Random Forest algorithm. The predictive models generated from the physical and chemical variables of soil, as well as the Random Forest algorithm, presented a high potential for predicting soil carbon stock and are sensitive to different land use systems.
publishDate 2021
dc.date.none.fl_str_mv 2021-09-14T13:00:38Z
2021-09-14T13:00:38Z
2021-09-14
2021
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv Forests, v. 12, n. 9, p. 1-15, Sept. 2021.
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1134318
https://doi.org/10.3390/f12091240
identifier_str_mv Forests, v. 12, n. 9, p. 1-15, Sept. 2021.
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/1134318
https://doi.org/10.3390/f12091240
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1822721525203075072