Soybean productivity, stability, and adaptability through mixed model methodology.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
Texto Completo: | http://www.alice.cnptia.embrapa.br/alice/handle/doc/1129445 https://doi.org/10.1590/0103-8478cr20200406 |
Resumo: | The genotype × environment (G×E) interaction plays an essential role in phenotypic expression and can lead to difficulties in genetic selection. Thus, the present study aimed to estimate genetic parameters and to compare different selection strategies in the context of mixed models for soybean breeding. For this, data referring to the evaluation of 30 genotypes in 10 environments, regarding the grain yield trait, were used. The variance components were estimated through restricted maximum likelihood (REML) and genotypic values were predicted through best linear unbiased prediction (BLUP). Significant effects of genotypes and G×E interaction were detected by the likelihood ratio test (LRT). Low genotypic correlation was obtained across environments, indicating complex G×E interaction. The selective accuracy was very high, indicating high reliability. Our results showed that the most productive soybean genotypes have high adaptability and stability. |
id |
EMBR_55860fdc5a25ea65a0df977a44882103 |
---|---|
oai_identifier_str |
oai:www.alice.cnptia.embrapa.br:doc/1129445 |
network_acronym_str |
EMBR |
network_name_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository_id_str |
2154 |
spelling |
Soybean productivity, stability, and adaptability through mixed model methodology.Interação GenéticaMelhoramento Genético VegetalSeleção GenéticaSojaPlant breedingGenotypeGenotype-environment interactionSoybeansThe genotype × environment (G×E) interaction plays an essential role in phenotypic expression and can lead to difficulties in genetic selection. Thus, the present study aimed to estimate genetic parameters and to compare different selection strategies in the context of mixed models for soybean breeding. For this, data referring to the evaluation of 30 genotypes in 10 environments, regarding the grain yield trait, were used. The variance components were estimated through restricted maximum likelihood (REML) and genotypic values were predicted through best linear unbiased prediction (BLUP). Significant effects of genotypes and G×E interaction were detected by the likelihood ratio test (LRT). Low genotypic correlation was obtained across environments, indicating complex G×E interaction. The selective accuracy was very high, indicating high reliability. Our results showed that the most productive soybean genotypes have high adaptability and stability.Título em português: Produtividade, estabilidade e adaptabilidade da soja por meio de metodologia de modelo misto.JENIFFER SANTANA PINTO COELHO EVANGELISTA, UFV; RODRIGO SILVA ALVES, UFV; MARCO ANTÔNIO PEIXOTO, UFV; MARCOS DEON VILELA DE RESENDE, CNPCa; PAULO EDUARDO TEODORO, UFMS; FELIPE LOPES DA SILVA, UFV; LEONARDO LOPES BHERING, UFV.EVANGELISTA, J. S. P. C.ALVES, R. S.PEIXOTO, M. A.RESENDE, M. D. V. deTEODORO, P. E.SILVA, F. L. daBHERING, L. L.2021-01-20T09:04:55Z2021-01-20T09:04:55Z2021-01-192021info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleCiência Rural, v. 51, n. 2, e20200406, 2021.http://www.alice.cnptia.embrapa.br/alice/handle/doc/1129445https://doi.org/10.1590/0103-8478cr20200406enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2021-01-20T09:05:02Zoai:www.alice.cnptia.embrapa.br:doc/1129445Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542021-01-20T09:05:02falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542021-01-20T09:05:02Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
Soybean productivity, stability, and adaptability through mixed model methodology. |
title |
Soybean productivity, stability, and adaptability through mixed model methodology. |
spellingShingle |
Soybean productivity, stability, and adaptability through mixed model methodology. EVANGELISTA, J. S. P. C. Interação Genética Melhoramento Genético Vegetal Seleção Genética Soja Plant breeding Genotype Genotype-environment interaction Soybeans |
title_short |
Soybean productivity, stability, and adaptability through mixed model methodology. |
title_full |
Soybean productivity, stability, and adaptability through mixed model methodology. |
title_fullStr |
Soybean productivity, stability, and adaptability through mixed model methodology. |
title_full_unstemmed |
Soybean productivity, stability, and adaptability through mixed model methodology. |
title_sort |
Soybean productivity, stability, and adaptability through mixed model methodology. |
author |
EVANGELISTA, J. S. P. C. |
author_facet |
EVANGELISTA, J. S. P. C. ALVES, R. S. PEIXOTO, M. A. RESENDE, M. D. V. de TEODORO, P. E. SILVA, F. L. da BHERING, L. L. |
author_role |
author |
author2 |
ALVES, R. S. PEIXOTO, M. A. RESENDE, M. D. V. de TEODORO, P. E. SILVA, F. L. da BHERING, L. L. |
author2_role |
author author author author author author |
dc.contributor.none.fl_str_mv |
JENIFFER SANTANA PINTO COELHO EVANGELISTA, UFV; RODRIGO SILVA ALVES, UFV; MARCO ANTÔNIO PEIXOTO, UFV; MARCOS DEON VILELA DE RESENDE, CNPCa; PAULO EDUARDO TEODORO, UFMS; FELIPE LOPES DA SILVA, UFV; LEONARDO LOPES BHERING, UFV. |
dc.contributor.author.fl_str_mv |
EVANGELISTA, J. S. P. C. ALVES, R. S. PEIXOTO, M. A. RESENDE, M. D. V. de TEODORO, P. E. SILVA, F. L. da BHERING, L. L. |
dc.subject.por.fl_str_mv |
Interação Genética Melhoramento Genético Vegetal Seleção Genética Soja Plant breeding Genotype Genotype-environment interaction Soybeans |
topic |
Interação Genética Melhoramento Genético Vegetal Seleção Genética Soja Plant breeding Genotype Genotype-environment interaction Soybeans |
description |
The genotype × environment (G×E) interaction plays an essential role in phenotypic expression and can lead to difficulties in genetic selection. Thus, the present study aimed to estimate genetic parameters and to compare different selection strategies in the context of mixed models for soybean breeding. For this, data referring to the evaluation of 30 genotypes in 10 environments, regarding the grain yield trait, were used. The variance components were estimated through restricted maximum likelihood (REML) and genotypic values were predicted through best linear unbiased prediction (BLUP). Significant effects of genotypes and G×E interaction were detected by the likelihood ratio test (LRT). Low genotypic correlation was obtained across environments, indicating complex G×E interaction. The selective accuracy was very high, indicating high reliability. Our results showed that the most productive soybean genotypes have high adaptability and stability. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-01-20T09:04:55Z 2021-01-20T09:04:55Z 2021-01-19 2021 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Ciência Rural, v. 51, n. 2, e20200406, 2021. http://www.alice.cnptia.embrapa.br/alice/handle/doc/1129445 https://doi.org/10.1590/0103-8478cr20200406 |
identifier_str_mv |
Ciência Rural, v. 51, n. 2, e20200406, 2021. |
url |
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1129445 https://doi.org/10.1590/0103-8478cr20200406 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
collection |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository.name.fl_str_mv |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
cg-riaa@embrapa.br |
_version_ |
1794503501366165504 |