Counting cattle in UAV images: dealing with clustered animals and animal/background contrast changes.

Detalhes bibliográficos
Autor(a) principal: BARBEDO, J. G. A.
Data de Publicação: 2020
Outros Autores: KOENIGKAN, L. V., SANTOS, P. M., RIBEIRO, A. R. B.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1121664
Resumo: Abstract: The management of livestock in extensive production systems may be challenging, especially in large areas. Using Unmanned Aerial Vehicles (UAVs) to collect images from the area of interest is quickly becoming a viable alternative, but suitable algorithms for extraction of relevant information from the images are still rare. This article proposes a method for counting cattle which combines a deep learning model for rough animal location, color space manipulation to increase contrast between animals and background, mathematical morphology to isolate the animals and infer the number of individuals in clustered groups, and image matching to take into account image overlap. Using Nelore and Canchim breeds as a case study, the proposed approach yields accuracies over 90% under a wide variety of conditions and backgrounds.
id EMBR_61c2235c98522a34bb5af462ff2d3429
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/1121664
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling Counting cattle in UAV images: dealing with clustered animals and animal/background contrast changes.Redes neuraisRede neural convolucionalVeículo aéreo não tripuladoCanchim breedNelore breedConvolutional neural networksMathematical morphologyDeep learning modeGado de CorteGado NeloreGado CanchimUnmanned aerial vehiclesNeural networksAbstract: The management of livestock in extensive production systems may be challenging, especially in large areas. Using Unmanned Aerial Vehicles (UAVs) to collect images from the area of interest is quickly becoming a viable alternative, but suitable algorithms for extraction of relevant information from the images are still rare. This article proposes a method for counting cattle which combines a deep learning model for rough animal location, color space manipulation to increase contrast between animals and background, mathematical morphology to isolate the animals and infer the number of individuals in clustered groups, and image matching to take into account image overlap. Using Nelore and Canchim breeds as a case study, the proposed approach yields accuracies over 90% under a wide variety of conditions and backgrounds.Article number: 2126.JAYME GARCIA ARNAL BARBEDO, CNPTIA; LUCIANO VIEIRA KOENIGKAN, CNPTIA; PATRICIA MENEZES SANTOS, CPPSE; ANDREA ROBERTO BUENO RIBEIRO, UNISA; UNIP.BARBEDO, J. G. A.KOENIGKAN, L. V.SANTOS, P. M.RIBEIRO, A. R. B.2020-04-16T01:02:40Z2020-04-16T01:02:40Z2020-04-1520202020-04-17T11:11:11Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleSensors, v. 20, n. 7, p. 1-14, Apr. 2020.http://www.alice.cnptia.embrapa.br/alice/handle/doc/112166410.3390/s20072126enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2020-04-16T01:02:50Zoai:www.alice.cnptia.embrapa.br:doc/1121664Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542020-04-16T01:02:50falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542020-04-16T01:02:50Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Counting cattle in UAV images: dealing with clustered animals and animal/background contrast changes.
title Counting cattle in UAV images: dealing with clustered animals and animal/background contrast changes.
spellingShingle Counting cattle in UAV images: dealing with clustered animals and animal/background contrast changes.
BARBEDO, J. G. A.
Redes neurais
Rede neural convolucional
Veículo aéreo não tripulado
Canchim breed
Nelore breed
Convolutional neural networks
Mathematical morphology
Deep learning mode
Gado de Corte
Gado Nelore
Gado Canchim
Unmanned aerial vehicles
Neural networks
title_short Counting cattle in UAV images: dealing with clustered animals and animal/background contrast changes.
title_full Counting cattle in UAV images: dealing with clustered animals and animal/background contrast changes.
title_fullStr Counting cattle in UAV images: dealing with clustered animals and animal/background contrast changes.
title_full_unstemmed Counting cattle in UAV images: dealing with clustered animals and animal/background contrast changes.
title_sort Counting cattle in UAV images: dealing with clustered animals and animal/background contrast changes.
author BARBEDO, J. G. A.
author_facet BARBEDO, J. G. A.
KOENIGKAN, L. V.
SANTOS, P. M.
RIBEIRO, A. R. B.
author_role author
author2 KOENIGKAN, L. V.
SANTOS, P. M.
RIBEIRO, A. R. B.
author2_role author
author
author
dc.contributor.none.fl_str_mv JAYME GARCIA ARNAL BARBEDO, CNPTIA; LUCIANO VIEIRA KOENIGKAN, CNPTIA; PATRICIA MENEZES SANTOS, CPPSE; ANDREA ROBERTO BUENO RIBEIRO, UNISA; UNIP.
dc.contributor.author.fl_str_mv BARBEDO, J. G. A.
KOENIGKAN, L. V.
SANTOS, P. M.
RIBEIRO, A. R. B.
dc.subject.por.fl_str_mv Redes neurais
Rede neural convolucional
Veículo aéreo não tripulado
Canchim breed
Nelore breed
Convolutional neural networks
Mathematical morphology
Deep learning mode
Gado de Corte
Gado Nelore
Gado Canchim
Unmanned aerial vehicles
Neural networks
topic Redes neurais
Rede neural convolucional
Veículo aéreo não tripulado
Canchim breed
Nelore breed
Convolutional neural networks
Mathematical morphology
Deep learning mode
Gado de Corte
Gado Nelore
Gado Canchim
Unmanned aerial vehicles
Neural networks
description Abstract: The management of livestock in extensive production systems may be challenging, especially in large areas. Using Unmanned Aerial Vehicles (UAVs) to collect images from the area of interest is quickly becoming a viable alternative, but suitable algorithms for extraction of relevant information from the images are still rare. This article proposes a method for counting cattle which combines a deep learning model for rough animal location, color space manipulation to increase contrast between animals and background, mathematical morphology to isolate the animals and infer the number of individuals in clustered groups, and image matching to take into account image overlap. Using Nelore and Canchim breeds as a case study, the proposed approach yields accuracies over 90% under a wide variety of conditions and backgrounds.
publishDate 2020
dc.date.none.fl_str_mv 2020-04-16T01:02:40Z
2020-04-16T01:02:40Z
2020-04-15
2020
2020-04-17T11:11:11Z
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv Sensors, v. 20, n. 7, p. 1-14, Apr. 2020.
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1121664
10.3390/s20072126
identifier_str_mv Sensors, v. 20, n. 7, p. 1-14, Apr. 2020.
10.3390/s20072126
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/1121664
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1794503491759112192