Counting cattle in UAV images: dealing with clustered animals and animal/background contrast changes.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
Texto Completo: | http://www.alice.cnptia.embrapa.br/alice/handle/doc/1121664 |
Resumo: | Abstract: The management of livestock in extensive production systems may be challenging, especially in large areas. Using Unmanned Aerial Vehicles (UAVs) to collect images from the area of interest is quickly becoming a viable alternative, but suitable algorithms for extraction of relevant information from the images are still rare. This article proposes a method for counting cattle which combines a deep learning model for rough animal location, color space manipulation to increase contrast between animals and background, mathematical morphology to isolate the animals and infer the number of individuals in clustered groups, and image matching to take into account image overlap. Using Nelore and Canchim breeds as a case study, the proposed approach yields accuracies over 90% under a wide variety of conditions and backgrounds. |
id |
EMBR_61c2235c98522a34bb5af462ff2d3429 |
---|---|
oai_identifier_str |
oai:www.alice.cnptia.embrapa.br:doc/1121664 |
network_acronym_str |
EMBR |
network_name_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository_id_str |
2154 |
spelling |
Counting cattle in UAV images: dealing with clustered animals and animal/background contrast changes.Redes neuraisRede neural convolucionalVeículo aéreo não tripuladoCanchim breedNelore breedConvolutional neural networksMathematical morphologyDeep learning modeGado de CorteGado NeloreGado CanchimUnmanned aerial vehiclesNeural networksAbstract: The management of livestock in extensive production systems may be challenging, especially in large areas. Using Unmanned Aerial Vehicles (UAVs) to collect images from the area of interest is quickly becoming a viable alternative, but suitable algorithms for extraction of relevant information from the images are still rare. This article proposes a method for counting cattle which combines a deep learning model for rough animal location, color space manipulation to increase contrast between animals and background, mathematical morphology to isolate the animals and infer the number of individuals in clustered groups, and image matching to take into account image overlap. Using Nelore and Canchim breeds as a case study, the proposed approach yields accuracies over 90% under a wide variety of conditions and backgrounds.Article number: 2126.JAYME GARCIA ARNAL BARBEDO, CNPTIA; LUCIANO VIEIRA KOENIGKAN, CNPTIA; PATRICIA MENEZES SANTOS, CPPSE; ANDREA ROBERTO BUENO RIBEIRO, UNISA; UNIP.BARBEDO, J. G. A.KOENIGKAN, L. V.SANTOS, P. M.RIBEIRO, A. R. B.2020-04-16T01:02:40Z2020-04-16T01:02:40Z2020-04-1520202020-04-17T11:11:11Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleSensors, v. 20, n. 7, p. 1-14, Apr. 2020.http://www.alice.cnptia.embrapa.br/alice/handle/doc/112166410.3390/s20072126enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2020-04-16T01:02:50Zoai:www.alice.cnptia.embrapa.br:doc/1121664Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542020-04-16T01:02:50falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542020-04-16T01:02:50Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
Counting cattle in UAV images: dealing with clustered animals and animal/background contrast changes. |
title |
Counting cattle in UAV images: dealing with clustered animals and animal/background contrast changes. |
spellingShingle |
Counting cattle in UAV images: dealing with clustered animals and animal/background contrast changes. BARBEDO, J. G. A. Redes neurais Rede neural convolucional Veículo aéreo não tripulado Canchim breed Nelore breed Convolutional neural networks Mathematical morphology Deep learning mode Gado de Corte Gado Nelore Gado Canchim Unmanned aerial vehicles Neural networks |
title_short |
Counting cattle in UAV images: dealing with clustered animals and animal/background contrast changes. |
title_full |
Counting cattle in UAV images: dealing with clustered animals and animal/background contrast changes. |
title_fullStr |
Counting cattle in UAV images: dealing with clustered animals and animal/background contrast changes. |
title_full_unstemmed |
Counting cattle in UAV images: dealing with clustered animals and animal/background contrast changes. |
title_sort |
Counting cattle in UAV images: dealing with clustered animals and animal/background contrast changes. |
author |
BARBEDO, J. G. A. |
author_facet |
BARBEDO, J. G. A. KOENIGKAN, L. V. SANTOS, P. M. RIBEIRO, A. R. B. |
author_role |
author |
author2 |
KOENIGKAN, L. V. SANTOS, P. M. RIBEIRO, A. R. B. |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
JAYME GARCIA ARNAL BARBEDO, CNPTIA; LUCIANO VIEIRA KOENIGKAN, CNPTIA; PATRICIA MENEZES SANTOS, CPPSE; ANDREA ROBERTO BUENO RIBEIRO, UNISA; UNIP. |
dc.contributor.author.fl_str_mv |
BARBEDO, J. G. A. KOENIGKAN, L. V. SANTOS, P. M. RIBEIRO, A. R. B. |
dc.subject.por.fl_str_mv |
Redes neurais Rede neural convolucional Veículo aéreo não tripulado Canchim breed Nelore breed Convolutional neural networks Mathematical morphology Deep learning mode Gado de Corte Gado Nelore Gado Canchim Unmanned aerial vehicles Neural networks |
topic |
Redes neurais Rede neural convolucional Veículo aéreo não tripulado Canchim breed Nelore breed Convolutional neural networks Mathematical morphology Deep learning mode Gado de Corte Gado Nelore Gado Canchim Unmanned aerial vehicles Neural networks |
description |
Abstract: The management of livestock in extensive production systems may be challenging, especially in large areas. Using Unmanned Aerial Vehicles (UAVs) to collect images from the area of interest is quickly becoming a viable alternative, but suitable algorithms for extraction of relevant information from the images are still rare. This article proposes a method for counting cattle which combines a deep learning model for rough animal location, color space manipulation to increase contrast between animals and background, mathematical morphology to isolate the animals and infer the number of individuals in clustered groups, and image matching to take into account image overlap. Using Nelore and Canchim breeds as a case study, the proposed approach yields accuracies over 90% under a wide variety of conditions and backgrounds. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-04-16T01:02:40Z 2020-04-16T01:02:40Z 2020-04-15 2020 2020-04-17T11:11:11Z |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Sensors, v. 20, n. 7, p. 1-14, Apr. 2020. http://www.alice.cnptia.embrapa.br/alice/handle/doc/1121664 10.3390/s20072126 |
identifier_str_mv |
Sensors, v. 20, n. 7, p. 1-14, Apr. 2020. 10.3390/s20072126 |
url |
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1121664 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
collection |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository.name.fl_str_mv |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
cg-riaa@embrapa.br |
_version_ |
1794503491759112192 |