Genomic prediction of lactation curves of Girolando cattle based on nonlinear mixed models.

Detalhes bibliográficos
Autor(a) principal: TEIXEIRA, F. R. F.
Data de Publicação: 2021
Outros Autores: NASCIMENTO, M., CECON, P. R., CRUZ, C. D., SILVA, F. F. e, NASCIMENTO, A. C. C., AZEVEDO, C. F., MARQUES, D. B. D., SILVA, M. V. G. B., CARNEIRO, A. P. S., PAIXAO, D. M.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1133535
http://dx.doi.org/10.4238/gmr18691
Resumo: Knowledge of lactation curves in dairy cattle is essential for understanding the animal production in milk production systems. Genomic prediction of lactation curves represents the genetic pattern of milk production of the animals in the herd. In this context, we made genomic predictions of lactation curves through genome-wide selection (GWS) to characterize the genetic pattern of lactation traits in Girolando cattle based on parameters estimated by nonlinear mixed effects (NLME) models. Data of 1,822 milk control records from 226 Girolando animals genotyped for 37,673 single nucleotide polymorphisms were analyzed. Nine NLME models were compared to identify the equation with the best fit. The lactation traits estimated by the best model were submitted to GWS analysis, using the Bayesian LASSO method. Then, based on the genomic estimated breeding values (GEBVs) obtained, genomic predictions of lactation curves were constructed, and the genetic parameters were calculated. Wood's equation showed the best fit among the evaluated models. Heritabilities ranged from 0.09 to 0.29 for the seven lactation variables (initial production, rates of increase and decline, lactation peak, time to peak yield, persistence and total production). The correlations among GEBVs ranged from -0.85 to 0.98. The concordances between the best animals selected according to the selected traits were greater when the correlations between GEBVs for these traits were also high. Consequently, the methodology allowed us to identify the best nonlinear model and to construct the genetic lactation curves of a Girolando cattle population, as well as to assess the differences between animals and the association between lactation variables.
id EMBR_6785a3cbeb331977fbe5a39feb81a49b
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/1133535
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling Genomic prediction of lactation curves of Girolando cattle based on nonlinear mixed models.Previsão genômicaBovinoGado LeiteiroCurva de LactaçãoHeritabilityGenomeGirolandoKnowledge of lactation curves in dairy cattle is essential for understanding the animal production in milk production systems. Genomic prediction of lactation curves represents the genetic pattern of milk production of the animals in the herd. In this context, we made genomic predictions of lactation curves through genome-wide selection (GWS) to characterize the genetic pattern of lactation traits in Girolando cattle based on parameters estimated by nonlinear mixed effects (NLME) models. Data of 1,822 milk control records from 226 Girolando animals genotyped for 37,673 single nucleotide polymorphisms were analyzed. Nine NLME models were compared to identify the equation with the best fit. The lactation traits estimated by the best model were submitted to GWS analysis, using the Bayesian LASSO method. Then, based on the genomic estimated breeding values (GEBVs) obtained, genomic predictions of lactation curves were constructed, and the genetic parameters were calculated. Wood's equation showed the best fit among the evaluated models. Heritabilities ranged from 0.09 to 0.29 for the seven lactation variables (initial production, rates of increase and decline, lactation peak, time to peak yield, persistence and total production). The correlations among GEBVs ranged from -0.85 to 0.98. The concordances between the best animals selected according to the selected traits were greater when the correlations between GEBVs for these traits were also high. Consequently, the methodology allowed us to identify the best nonlinear model and to construct the genetic lactation curves of a Girolando cattle population, as well as to assess the differences between animals and the association between lactation variables.Universidade Federal do Piauí; Universidade Federal de Viçosa; Universidade Federal de Viçosa; Universidade Federal de Viçosa; Universidade Federal de Viçosa; A.C.C. NASCIMENTO, Universidade Federal de Viçosa; Universidade Federal de Viçosa; D.B.D. MARQUES, Universidade Federal de Viçosa; MARCOS VINICIUS GUALBERTO B SILVA, CNPGL; A.P.S. CARNEIRO, Universidade Federal de Viçosa; Universidade de São Paulo.TEIXEIRA, F. R. F.NASCIMENTO, M.CECON, P. R.CRUZ, C. D.SILVA, F. F. eNASCIMENTO, A. C. C.AZEVEDO, C. F.MARQUES, D. B. D.SILVA, M. V. G. B.CARNEIRO, A. P. S.PAIXAO, D. M.2021-08-13T17:00:23Z2021-08-13T17:00:23Z2021-08-132021info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleGenetics and Molecular Research, v. 20, n. 1, gmr18691, 2021.http://www.alice.cnptia.embrapa.br/alice/handle/doc/1133535http://dx.doi.org/10.4238/gmr18691enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2021-08-13T17:00:32Zoai:www.alice.cnptia.embrapa.br:doc/1133535Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542021-08-13T17:00:32Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Genomic prediction of lactation curves of Girolando cattle based on nonlinear mixed models.
title Genomic prediction of lactation curves of Girolando cattle based on nonlinear mixed models.
spellingShingle Genomic prediction of lactation curves of Girolando cattle based on nonlinear mixed models.
TEIXEIRA, F. R. F.
Previsão genômica
Bovino
Gado Leiteiro
Curva de Lactação
Heritability
Genome
Girolando
title_short Genomic prediction of lactation curves of Girolando cattle based on nonlinear mixed models.
title_full Genomic prediction of lactation curves of Girolando cattle based on nonlinear mixed models.
title_fullStr Genomic prediction of lactation curves of Girolando cattle based on nonlinear mixed models.
title_full_unstemmed Genomic prediction of lactation curves of Girolando cattle based on nonlinear mixed models.
title_sort Genomic prediction of lactation curves of Girolando cattle based on nonlinear mixed models.
author TEIXEIRA, F. R. F.
author_facet TEIXEIRA, F. R. F.
NASCIMENTO, M.
CECON, P. R.
CRUZ, C. D.
SILVA, F. F. e
NASCIMENTO, A. C. C.
AZEVEDO, C. F.
MARQUES, D. B. D.
SILVA, M. V. G. B.
CARNEIRO, A. P. S.
PAIXAO, D. M.
author_role author
author2 NASCIMENTO, M.
CECON, P. R.
CRUZ, C. D.
SILVA, F. F. e
NASCIMENTO, A. C. C.
AZEVEDO, C. F.
MARQUES, D. B. D.
SILVA, M. V. G. B.
CARNEIRO, A. P. S.
PAIXAO, D. M.
author2_role author
author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade Federal do Piauí; Universidade Federal de Viçosa; Universidade Federal de Viçosa; Universidade Federal de Viçosa; Universidade Federal de Viçosa; A.C.C. NASCIMENTO, Universidade Federal de Viçosa; Universidade Federal de Viçosa; D.B.D. MARQUES, Universidade Federal de Viçosa; MARCOS VINICIUS GUALBERTO B SILVA, CNPGL; A.P.S. CARNEIRO, Universidade Federal de Viçosa; Universidade de São Paulo.
dc.contributor.author.fl_str_mv TEIXEIRA, F. R. F.
NASCIMENTO, M.
CECON, P. R.
CRUZ, C. D.
SILVA, F. F. e
NASCIMENTO, A. C. C.
AZEVEDO, C. F.
MARQUES, D. B. D.
SILVA, M. V. G. B.
CARNEIRO, A. P. S.
PAIXAO, D. M.
dc.subject.por.fl_str_mv Previsão genômica
Bovino
Gado Leiteiro
Curva de Lactação
Heritability
Genome
Girolando
topic Previsão genômica
Bovino
Gado Leiteiro
Curva de Lactação
Heritability
Genome
Girolando
description Knowledge of lactation curves in dairy cattle is essential for understanding the animal production in milk production systems. Genomic prediction of lactation curves represents the genetic pattern of milk production of the animals in the herd. In this context, we made genomic predictions of lactation curves through genome-wide selection (GWS) to characterize the genetic pattern of lactation traits in Girolando cattle based on parameters estimated by nonlinear mixed effects (NLME) models. Data of 1,822 milk control records from 226 Girolando animals genotyped for 37,673 single nucleotide polymorphisms were analyzed. Nine NLME models were compared to identify the equation with the best fit. The lactation traits estimated by the best model were submitted to GWS analysis, using the Bayesian LASSO method. Then, based on the genomic estimated breeding values (GEBVs) obtained, genomic predictions of lactation curves were constructed, and the genetic parameters were calculated. Wood's equation showed the best fit among the evaluated models. Heritabilities ranged from 0.09 to 0.29 for the seven lactation variables (initial production, rates of increase and decline, lactation peak, time to peak yield, persistence and total production). The correlations among GEBVs ranged from -0.85 to 0.98. The concordances between the best animals selected according to the selected traits were greater when the correlations between GEBVs for these traits were also high. Consequently, the methodology allowed us to identify the best nonlinear model and to construct the genetic lactation curves of a Girolando cattle population, as well as to assess the differences between animals and the association between lactation variables.
publishDate 2021
dc.date.none.fl_str_mv 2021-08-13T17:00:23Z
2021-08-13T17:00:23Z
2021-08-13
2021
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv Genetics and Molecular Research, v. 20, n. 1, gmr18691, 2021.
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1133535
http://dx.doi.org/10.4238/gmr18691
identifier_str_mv Genetics and Molecular Research, v. 20, n. 1, gmr18691, 2021.
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/1133535
http://dx.doi.org/10.4238/gmr18691
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1817695615172214784