Mixed-effects height prediction model for Juniperus procera trees from a Dry Afromontane Forest in Ethiopia.

Detalhes bibliográficos
Autor(a) principal: TESHOME, M.
Data de Publicação: 2024
Outros Autores: BRAZ, E. M., TORRES, C. M. M. E., RAPTIS, D. I., MATTOS, P. P. de, TEMESGEN, H., RUBIO-CAMACHO, E. A., SILESHI, G. W.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1162360
https://doi.org/10.3390/f15030443
Resumo: Tree height is a crucial variable in forestry science. In the current study, an accurate height prediction model for Juniperus procera Hochst. ex Endl. trees were developed, using a nonlinear mixed-effects modeling approach on 1215 observations from 101 randomly established plots in the Chilimo Dry Afromontane Forest in Ethiopia. After comparing 14 nonlinear models, the most appropriate base model was selected and expanded as a mixed-effects model, using the sample plot as a grouping factor, and adding stand-level variables to increase the model’s prediction ability. Using a completely independent dataset of observations, the best sampling alternative for calibration was determined using goodness-of-fit criteria. Our findings revealed that the Michaelis–Menten model outperformed the other models, while the expansion to the mixed-effects model significantly improved the height prediction. On the other hand, incorporating the quadratic mean diameter and the stem density slightly improved the model’s prediction ability. The fixed-effects of the selected model can also be used to predict the mean height of Juniperus procera trees as a marginal solution. The calibration response revealed that a systematic selection of the three largest-diameter trees at the plot level is the most effective for random effect estimation across new plots or stands.
id EMBR_6dc179628e52bfcebcb2181eecae5d63
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/1162360
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling Mixed-effects height prediction model for Juniperus procera trees from a Dry Afromontane Forest in Ethiopia.Stand volumeNative treeCalibraçãoTree heightAltura das árvoresModelo de prediçãoPrediction modelInventário FlorestalForest inventoryAllometryCalibrationJuniperus proceraforestryTree height is a crucial variable in forestry science. In the current study, an accurate height prediction model for Juniperus procera Hochst. ex Endl. trees were developed, using a nonlinear mixed-effects modeling approach on 1215 observations from 101 randomly established plots in the Chilimo Dry Afromontane Forest in Ethiopia. After comparing 14 nonlinear models, the most appropriate base model was selected and expanded as a mixed-effects model, using the sample plot as a grouping factor, and adding stand-level variables to increase the model’s prediction ability. Using a completely independent dataset of observations, the best sampling alternative for calibration was determined using goodness-of-fit criteria. Our findings revealed that the Michaelis–Menten model outperformed the other models, while the expansion to the mixed-effects model significantly improved the height prediction. On the other hand, incorporating the quadratic mean diameter and the stem density slightly improved the model’s prediction ability. The fixed-effects of the selected model can also be used to predict the mean height of Juniperus procera trees as a marginal solution. The calibration response revealed that a systematic selection of the three largest-diameter trees at the plot level is the most effective for random effect estimation across new plots or stands.MINDAYE TESHOME, UNIVERSIDADE FEDERAL DE VIÇOSA; EVALDO MUNOZ BRAZ, CNPF; CARLOS MOREIRA MIQUELINO ELETO TORRES, UNIVERSIDADE FEDERAL DE VIÇOSA; DIMITRIOS IOANNIS RAPTIS, INTERNATIONAL HELLENIC UNIVERSITY; PATRICIA POVOA DE MATTOS, CNPF; HAILEMARIAM TEMESGEN, OREGON STATE UNIVERSITY; ERNESTO ALONSO RUBIO-CAMACHO, INSTITUTO NACIONAL DE INVESTIGACIONES FORESTALES, AGRÍCOLAS Y PECUARIAS; GUDETA WOLDESEMAYAT SILESHI, ADDIS ABABA UNIVERSITY.TESHOME, M.BRAZ, E. M.TORRES, C. M. M. E.RAPTIS, D. I.MATTOS, P. P. deTEMESGEN, H.RUBIO-CAMACHO, E. A.SILESHI, G. W.2024-02-28T17:32:14Z2024-02-28T17:32:14Z2024-02-282024info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleForests, v. 15, n. 3, 443, p. 1-19, 2024.http://www.alice.cnptia.embrapa.br/alice/handle/doc/1162360https://doi.org/10.3390/f15030443enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2024-02-28T17:32:14Zoai:www.alice.cnptia.embrapa.br:doc/1162360Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542024-02-28T17:32:14Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Mixed-effects height prediction model for Juniperus procera trees from a Dry Afromontane Forest in Ethiopia.
title Mixed-effects height prediction model for Juniperus procera trees from a Dry Afromontane Forest in Ethiopia.
spellingShingle Mixed-effects height prediction model for Juniperus procera trees from a Dry Afromontane Forest in Ethiopia.
TESHOME, M.
Stand volume
Native tree
Calibração
Tree height
Altura das árvores
Modelo de predição
Prediction model
Inventário Florestal
Forest inventory
Allometry
Calibration
Juniperus procera
forestry
title_short Mixed-effects height prediction model for Juniperus procera trees from a Dry Afromontane Forest in Ethiopia.
title_full Mixed-effects height prediction model for Juniperus procera trees from a Dry Afromontane Forest in Ethiopia.
title_fullStr Mixed-effects height prediction model for Juniperus procera trees from a Dry Afromontane Forest in Ethiopia.
title_full_unstemmed Mixed-effects height prediction model for Juniperus procera trees from a Dry Afromontane Forest in Ethiopia.
title_sort Mixed-effects height prediction model for Juniperus procera trees from a Dry Afromontane Forest in Ethiopia.
author TESHOME, M.
author_facet TESHOME, M.
BRAZ, E. M.
TORRES, C. M. M. E.
RAPTIS, D. I.
MATTOS, P. P. de
TEMESGEN, H.
RUBIO-CAMACHO, E. A.
SILESHI, G. W.
author_role author
author2 BRAZ, E. M.
TORRES, C. M. M. E.
RAPTIS, D. I.
MATTOS, P. P. de
TEMESGEN, H.
RUBIO-CAMACHO, E. A.
SILESHI, G. W.
author2_role author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv MINDAYE TESHOME, UNIVERSIDADE FEDERAL DE VIÇOSA; EVALDO MUNOZ BRAZ, CNPF; CARLOS MOREIRA MIQUELINO ELETO TORRES, UNIVERSIDADE FEDERAL DE VIÇOSA; DIMITRIOS IOANNIS RAPTIS, INTERNATIONAL HELLENIC UNIVERSITY; PATRICIA POVOA DE MATTOS, CNPF; HAILEMARIAM TEMESGEN, OREGON STATE UNIVERSITY; ERNESTO ALONSO RUBIO-CAMACHO, INSTITUTO NACIONAL DE INVESTIGACIONES FORESTALES, AGRÍCOLAS Y PECUARIAS; GUDETA WOLDESEMAYAT SILESHI, ADDIS ABABA UNIVERSITY.
dc.contributor.author.fl_str_mv TESHOME, M.
BRAZ, E. M.
TORRES, C. M. M. E.
RAPTIS, D. I.
MATTOS, P. P. de
TEMESGEN, H.
RUBIO-CAMACHO, E. A.
SILESHI, G. W.
dc.subject.por.fl_str_mv Stand volume
Native tree
Calibração
Tree height
Altura das árvores
Modelo de predição
Prediction model
Inventário Florestal
Forest inventory
Allometry
Calibration
Juniperus procera
forestry
topic Stand volume
Native tree
Calibração
Tree height
Altura das árvores
Modelo de predição
Prediction model
Inventário Florestal
Forest inventory
Allometry
Calibration
Juniperus procera
forestry
description Tree height is a crucial variable in forestry science. In the current study, an accurate height prediction model for Juniperus procera Hochst. ex Endl. trees were developed, using a nonlinear mixed-effects modeling approach on 1215 observations from 101 randomly established plots in the Chilimo Dry Afromontane Forest in Ethiopia. After comparing 14 nonlinear models, the most appropriate base model was selected and expanded as a mixed-effects model, using the sample plot as a grouping factor, and adding stand-level variables to increase the model’s prediction ability. Using a completely independent dataset of observations, the best sampling alternative for calibration was determined using goodness-of-fit criteria. Our findings revealed that the Michaelis–Menten model outperformed the other models, while the expansion to the mixed-effects model significantly improved the height prediction. On the other hand, incorporating the quadratic mean diameter and the stem density slightly improved the model’s prediction ability. The fixed-effects of the selected model can also be used to predict the mean height of Juniperus procera trees as a marginal solution. The calibration response revealed that a systematic selection of the three largest-diameter trees at the plot level is the most effective for random effect estimation across new plots or stands.
publishDate 2024
dc.date.none.fl_str_mv 2024-02-28T17:32:14Z
2024-02-28T17:32:14Z
2024-02-28
2024
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv Forests, v. 15, n. 3, 443, p. 1-19, 2024.
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1162360
https://doi.org/10.3390/f15030443
identifier_str_mv Forests, v. 15, n. 3, 443, p. 1-19, 2024.
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/1162360
https://doi.org/10.3390/f15030443
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1817695697007280128