Annual cropland mapping using data mining and OLI Landsat-8.

Detalhes bibliográficos
Autor(a) principal: OLDONI, L. V.
Data de Publicação: 2019
Outros Autores: CATTANI, C. E. V., MERCANTE, E., JOHANN, J. A., ANTUNES, J. F. G., ALMEIDA, L.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1114915
http://dx.doi.org/10.1590/1807-1929/agriambi.v23n12p952-958
Resumo: ABSTRACT: In the state of Paraná, Brazil, there are no major changes in areas cultivated with annual crops, mainly due to environmental laws that do not allow expansions to new areas. There is a great contribution of the annual crops to the domestic demand of food and economic demand in the exports. Thus, the area and distribution of annual crops are information of great importance. New methodologies, such as data mining, are being tested with the objective of analyzing and improving their potential use for classification of land use and land cover. This study used the classifiers decision tree and random forest with Normalized Difference Vegetation Index (NDVI) temporal metrics on images from Operational Land Imager (OLI)/Landsat-8. The results were compared with traditional methods spectral images and Maximum Likelihood Classifier (MLC). At first, seven classes were mapped (water bodies, sugarcane, urban area, annual crops, forest, pasture and reforestation areas); then, only two classes were considered (annual crops and other targets). When classifying the seven targets, both methods had corresponding results, showing global accuracy near 84%. NDVI temporal metrics showed producer?s and user?s accuracy for the annual crop class of 86 and 100%, respectively. However, if considering only two classes, the NDVI temporal metrics reached global accuracy of near 98% and producer?s and user?s accuracy above 94%.
id EMBR_6ea43a06cad917e4d41c08d13825a947
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/1114915
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling Annual cropland mapping using data mining and OLI Landsat-8.Árvore de decisãoMétricas temporais de NDVIMineração de dadosSéries temporaisDecision treeNDVI temporal metricsRandom forestData miningNormalized difference vegetation indexTime series analysisABSTRACT: In the state of Paraná, Brazil, there are no major changes in areas cultivated with annual crops, mainly due to environmental laws that do not allow expansions to new areas. There is a great contribution of the annual crops to the domestic demand of food and economic demand in the exports. Thus, the area and distribution of annual crops are information of great importance. New methodologies, such as data mining, are being tested with the objective of analyzing and improving their potential use for classification of land use and land cover. This study used the classifiers decision tree and random forest with Normalized Difference Vegetation Index (NDVI) temporal metrics on images from Operational Land Imager (OLI)/Landsat-8. The results were compared with traditional methods spectral images and Maximum Likelihood Classifier (MLC). At first, seven classes were mapped (water bodies, sugarcane, urban area, annual crops, forest, pasture and reforestation areas); then, only two classes were considered (annual crops and other targets). When classifying the seven targets, both methods had corresponding results, showing global accuracy near 84%. NDVI temporal metrics showed producer?s and user?s accuracy for the annual crop class of 86 and 100%, respectively. However, if considering only two classes, the NDVI temporal metrics reached global accuracy of near 98% and producer?s and user?s accuracy above 94%.LUCAS VOLOCHEN OLDONI, INPE; CARLOS EDUARDO VIZZOTTO CATTANI, Unioeste; ERIVELTO MERCANTE, Unioeste; JERRY ADRIANI JOHANN, Unioeste; JOAO FRANCISCO GONCALVES ANTUNES, CNPTIA; LUIZ ALMEIDA, INPE.OLDONI, L. V.CATTANI, C. E. V.MERCANTE, E.JOHANN, J. A.ANTUNES, J. F. G.ALMEIDA, L.2019-11-22T18:21:53Z2019-11-22T18:21:53Z2019-11-2220192019-11-22T18:21:53Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleRevista Brasileira de Engenharia Agrícola e Ambiental, Campina Grande, v. 23, n. 12, p. 952-958, 2019.http://www.alice.cnptia.embrapa.br/alice/handle/doc/1114915http://dx.doi.org/10.1590/1807-1929/agriambi.v23n12p952-958enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2019-11-22T18:21:59Zoai:www.alice.cnptia.embrapa.br:doc/1114915Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542019-11-22T18:21:59falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542019-11-22T18:21:59Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Annual cropland mapping using data mining and OLI Landsat-8.
title Annual cropland mapping using data mining and OLI Landsat-8.
spellingShingle Annual cropland mapping using data mining and OLI Landsat-8.
OLDONI, L. V.
Árvore de decisão
Métricas temporais de NDVI
Mineração de dados
Séries temporais
Decision tree
NDVI temporal metrics
Random forest
Data mining
Normalized difference vegetation index
Time series analysis
title_short Annual cropland mapping using data mining and OLI Landsat-8.
title_full Annual cropland mapping using data mining and OLI Landsat-8.
title_fullStr Annual cropland mapping using data mining and OLI Landsat-8.
title_full_unstemmed Annual cropland mapping using data mining and OLI Landsat-8.
title_sort Annual cropland mapping using data mining and OLI Landsat-8.
author OLDONI, L. V.
author_facet OLDONI, L. V.
CATTANI, C. E. V.
MERCANTE, E.
JOHANN, J. A.
ANTUNES, J. F. G.
ALMEIDA, L.
author_role author
author2 CATTANI, C. E. V.
MERCANTE, E.
JOHANN, J. A.
ANTUNES, J. F. G.
ALMEIDA, L.
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv LUCAS VOLOCHEN OLDONI, INPE; CARLOS EDUARDO VIZZOTTO CATTANI, Unioeste; ERIVELTO MERCANTE, Unioeste; JERRY ADRIANI JOHANN, Unioeste; JOAO FRANCISCO GONCALVES ANTUNES, CNPTIA; LUIZ ALMEIDA, INPE.
dc.contributor.author.fl_str_mv OLDONI, L. V.
CATTANI, C. E. V.
MERCANTE, E.
JOHANN, J. A.
ANTUNES, J. F. G.
ALMEIDA, L.
dc.subject.por.fl_str_mv Árvore de decisão
Métricas temporais de NDVI
Mineração de dados
Séries temporais
Decision tree
NDVI temporal metrics
Random forest
Data mining
Normalized difference vegetation index
Time series analysis
topic Árvore de decisão
Métricas temporais de NDVI
Mineração de dados
Séries temporais
Decision tree
NDVI temporal metrics
Random forest
Data mining
Normalized difference vegetation index
Time series analysis
description ABSTRACT: In the state of Paraná, Brazil, there are no major changes in areas cultivated with annual crops, mainly due to environmental laws that do not allow expansions to new areas. There is a great contribution of the annual crops to the domestic demand of food and economic demand in the exports. Thus, the area and distribution of annual crops are information of great importance. New methodologies, such as data mining, are being tested with the objective of analyzing and improving their potential use for classification of land use and land cover. This study used the classifiers decision tree and random forest with Normalized Difference Vegetation Index (NDVI) temporal metrics on images from Operational Land Imager (OLI)/Landsat-8. The results were compared with traditional methods spectral images and Maximum Likelihood Classifier (MLC). At first, seven classes were mapped (water bodies, sugarcane, urban area, annual crops, forest, pasture and reforestation areas); then, only two classes were considered (annual crops and other targets). When classifying the seven targets, both methods had corresponding results, showing global accuracy near 84%. NDVI temporal metrics showed producer?s and user?s accuracy for the annual crop class of 86 and 100%, respectively. However, if considering only two classes, the NDVI temporal metrics reached global accuracy of near 98% and producer?s and user?s accuracy above 94%.
publishDate 2019
dc.date.none.fl_str_mv 2019-11-22T18:21:53Z
2019-11-22T18:21:53Z
2019-11-22
2019
2019-11-22T18:21:53Z
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv Revista Brasileira de Engenharia Agrícola e Ambiental, Campina Grande, v. 23, n. 12, p. 952-958, 2019.
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1114915
http://dx.doi.org/10.1590/1807-1929/agriambi.v23n12p952-958
identifier_str_mv Revista Brasileira de Engenharia Agrícola e Ambiental, Campina Grande, v. 23, n. 12, p. 952-958, 2019.
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/1114915
http://dx.doi.org/10.1590/1807-1929/agriambi.v23n12p952-958
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1794503484421177344