Annual cropland mapping using data mining and OLI Landsat-8.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
Texto Completo: | http://www.alice.cnptia.embrapa.br/alice/handle/doc/1114915 http://dx.doi.org/10.1590/1807-1929/agriambi.v23n12p952-958 |
Resumo: | ABSTRACT: In the state of Paraná, Brazil, there are no major changes in areas cultivated with annual crops, mainly due to environmental laws that do not allow expansions to new areas. There is a great contribution of the annual crops to the domestic demand of food and economic demand in the exports. Thus, the area and distribution of annual crops are information of great importance. New methodologies, such as data mining, are being tested with the objective of analyzing and improving their potential use for classification of land use and land cover. This study used the classifiers decision tree and random forest with Normalized Difference Vegetation Index (NDVI) temporal metrics on images from Operational Land Imager (OLI)/Landsat-8. The results were compared with traditional methods spectral images and Maximum Likelihood Classifier (MLC). At first, seven classes were mapped (water bodies, sugarcane, urban area, annual crops, forest, pasture and reforestation areas); then, only two classes were considered (annual crops and other targets). When classifying the seven targets, both methods had corresponding results, showing global accuracy near 84%. NDVI temporal metrics showed producer?s and user?s accuracy for the annual crop class of 86 and 100%, respectively. However, if considering only two classes, the NDVI temporal metrics reached global accuracy of near 98% and producer?s and user?s accuracy above 94%. |
id |
EMBR_6ea43a06cad917e4d41c08d13825a947 |
---|---|
oai_identifier_str |
oai:www.alice.cnptia.embrapa.br:doc/1114915 |
network_acronym_str |
EMBR |
network_name_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository_id_str |
2154 |
spelling |
Annual cropland mapping using data mining and OLI Landsat-8.Árvore de decisãoMétricas temporais de NDVIMineração de dadosSéries temporaisDecision treeNDVI temporal metricsRandom forestData miningNormalized difference vegetation indexTime series analysisABSTRACT: In the state of Paraná, Brazil, there are no major changes in areas cultivated with annual crops, mainly due to environmental laws that do not allow expansions to new areas. There is a great contribution of the annual crops to the domestic demand of food and economic demand in the exports. Thus, the area and distribution of annual crops are information of great importance. New methodologies, such as data mining, are being tested with the objective of analyzing and improving their potential use for classification of land use and land cover. This study used the classifiers decision tree and random forest with Normalized Difference Vegetation Index (NDVI) temporal metrics on images from Operational Land Imager (OLI)/Landsat-8. The results were compared with traditional methods spectral images and Maximum Likelihood Classifier (MLC). At first, seven classes were mapped (water bodies, sugarcane, urban area, annual crops, forest, pasture and reforestation areas); then, only two classes were considered (annual crops and other targets). When classifying the seven targets, both methods had corresponding results, showing global accuracy near 84%. NDVI temporal metrics showed producer?s and user?s accuracy for the annual crop class of 86 and 100%, respectively. However, if considering only two classes, the NDVI temporal metrics reached global accuracy of near 98% and producer?s and user?s accuracy above 94%.LUCAS VOLOCHEN OLDONI, INPE; CARLOS EDUARDO VIZZOTTO CATTANI, Unioeste; ERIVELTO MERCANTE, Unioeste; JERRY ADRIANI JOHANN, Unioeste; JOAO FRANCISCO GONCALVES ANTUNES, CNPTIA; LUIZ ALMEIDA, INPE.OLDONI, L. V.CATTANI, C. E. V.MERCANTE, E.JOHANN, J. A.ANTUNES, J. F. G.ALMEIDA, L.2019-11-22T18:21:53Z2019-11-22T18:21:53Z2019-11-2220192019-11-22T18:21:53Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleRevista Brasileira de Engenharia Agrícola e Ambiental, Campina Grande, v. 23, n. 12, p. 952-958, 2019.http://www.alice.cnptia.embrapa.br/alice/handle/doc/1114915http://dx.doi.org/10.1590/1807-1929/agriambi.v23n12p952-958enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2019-11-22T18:21:59Zoai:www.alice.cnptia.embrapa.br:doc/1114915Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542019-11-22T18:21:59falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542019-11-22T18:21:59Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
Annual cropland mapping using data mining and OLI Landsat-8. |
title |
Annual cropland mapping using data mining and OLI Landsat-8. |
spellingShingle |
Annual cropland mapping using data mining and OLI Landsat-8. OLDONI, L. V. Árvore de decisão Métricas temporais de NDVI Mineração de dados Séries temporais Decision tree NDVI temporal metrics Random forest Data mining Normalized difference vegetation index Time series analysis |
title_short |
Annual cropland mapping using data mining and OLI Landsat-8. |
title_full |
Annual cropland mapping using data mining and OLI Landsat-8. |
title_fullStr |
Annual cropland mapping using data mining and OLI Landsat-8. |
title_full_unstemmed |
Annual cropland mapping using data mining and OLI Landsat-8. |
title_sort |
Annual cropland mapping using data mining and OLI Landsat-8. |
author |
OLDONI, L. V. |
author_facet |
OLDONI, L. V. CATTANI, C. E. V. MERCANTE, E. JOHANN, J. A. ANTUNES, J. F. G. ALMEIDA, L. |
author_role |
author |
author2 |
CATTANI, C. E. V. MERCANTE, E. JOHANN, J. A. ANTUNES, J. F. G. ALMEIDA, L. |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
LUCAS VOLOCHEN OLDONI, INPE; CARLOS EDUARDO VIZZOTTO CATTANI, Unioeste; ERIVELTO MERCANTE, Unioeste; JERRY ADRIANI JOHANN, Unioeste; JOAO FRANCISCO GONCALVES ANTUNES, CNPTIA; LUIZ ALMEIDA, INPE. |
dc.contributor.author.fl_str_mv |
OLDONI, L. V. CATTANI, C. E. V. MERCANTE, E. JOHANN, J. A. ANTUNES, J. F. G. ALMEIDA, L. |
dc.subject.por.fl_str_mv |
Árvore de decisão Métricas temporais de NDVI Mineração de dados Séries temporais Decision tree NDVI temporal metrics Random forest Data mining Normalized difference vegetation index Time series analysis |
topic |
Árvore de decisão Métricas temporais de NDVI Mineração de dados Séries temporais Decision tree NDVI temporal metrics Random forest Data mining Normalized difference vegetation index Time series analysis |
description |
ABSTRACT: In the state of Paraná, Brazil, there are no major changes in areas cultivated with annual crops, mainly due to environmental laws that do not allow expansions to new areas. There is a great contribution of the annual crops to the domestic demand of food and economic demand in the exports. Thus, the area and distribution of annual crops are information of great importance. New methodologies, such as data mining, are being tested with the objective of analyzing and improving their potential use for classification of land use and land cover. This study used the classifiers decision tree and random forest with Normalized Difference Vegetation Index (NDVI) temporal metrics on images from Operational Land Imager (OLI)/Landsat-8. The results were compared with traditional methods spectral images and Maximum Likelihood Classifier (MLC). At first, seven classes were mapped (water bodies, sugarcane, urban area, annual crops, forest, pasture and reforestation areas); then, only two classes were considered (annual crops and other targets). When classifying the seven targets, both methods had corresponding results, showing global accuracy near 84%. NDVI temporal metrics showed producer?s and user?s accuracy for the annual crop class of 86 and 100%, respectively. However, if considering only two classes, the NDVI temporal metrics reached global accuracy of near 98% and producer?s and user?s accuracy above 94%. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-11-22T18:21:53Z 2019-11-22T18:21:53Z 2019-11-22 2019 2019-11-22T18:21:53Z |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Revista Brasileira de Engenharia Agrícola e Ambiental, Campina Grande, v. 23, n. 12, p. 952-958, 2019. http://www.alice.cnptia.embrapa.br/alice/handle/doc/1114915 http://dx.doi.org/10.1590/1807-1929/agriambi.v23n12p952-958 |
identifier_str_mv |
Revista Brasileira de Engenharia Agrícola e Ambiental, Campina Grande, v. 23, n. 12, p. 952-958, 2019. |
url |
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1114915 http://dx.doi.org/10.1590/1807-1929/agriambi.v23n12p952-958 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
collection |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository.name.fl_str_mv |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
cg-riaa@embrapa.br |
_version_ |
1794503484421177344 |