Regularized quantile regression applied to genome-enabled prediction of quantitative traits.

Detalhes bibliográficos
Autor(a) principal: NASCIMENTO, M.
Data de Publicação: 2017
Outros Autores: SILVA, F. F. e, RESENDE, M. D. V. de, CRUZ, C. D., NASCIMENTO, A. C. C., VIANA, J. M. S., AZEVEDO, C. F., BARROSO, L. M. A.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1084109
Resumo: Genomic selection (GS) is a variant of marker-assisted selection, in which genetic markers covering the whole genome predict individual genetic merits for breeding. GS increases the accuracy of breeding values (BV) prediction. Although a variety of statistical models have been proposed to estimate BV in GS, few methodologies have examined statistical challenges based on non-normal phenotypic distributions, e.g., skewed distributions. Traditional GS models estimate changes in the phenotype distribution mean, i.e., the function is defined for the expected value of trait-conditional on markers, E(Y|X). We proposed an approach based on regularized quantile regression (RQR) for GS to improve the estimation of marker effects and the consequent genomic estimated BV (GEBV). The RQR model is based on conditional quantiles, Qt(Y|X), enabling models that fit all portions of a trait probability distribution. This allows RQR to choose one quantile function that ?best? represents the relationship between the dependent and independent variables. Data were simulated for 1000 individuals. The genome included 1500 markers; most had a small effect and only a few markers with a sizable effect were simulated. We evaluated three scenarios according to symmetrical, positively, and negatively skewed distributions. Analyses were performed using Bayesian LASSO (BLASSO) and RQR considering three quantiles (0.25, 0.50, and 0.75). The use of RQR to estimate GEBV was efficient; the RQR method achieved better results than BLASSO, at least for one quantile model fit for all evaluated scenarios. The gains in relation to BLASSO were 86.28 and 55.70% for positively and negatively skewed distributions, respectively.
id EMBR_6ea9e538ec139ca6584df9183389f8b0
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/1084109
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling Regularized quantile regression applied to genome-enabled prediction of quantitative traits.Seleção genômicaGenomic selectionRegularized regressionSNP effectsEstatísticaMarker-assisted selectionSimulation modelsStatisticsGenomic selection (GS) is a variant of marker-assisted selection, in which genetic markers covering the whole genome predict individual genetic merits for breeding. GS increases the accuracy of breeding values (BV) prediction. Although a variety of statistical models have been proposed to estimate BV in GS, few methodologies have examined statistical challenges based on non-normal phenotypic distributions, e.g., skewed distributions. Traditional GS models estimate changes in the phenotype distribution mean, i.e., the function is defined for the expected value of trait-conditional on markers, E(Y|X). We proposed an approach based on regularized quantile regression (RQR) for GS to improve the estimation of marker effects and the consequent genomic estimated BV (GEBV). The RQR model is based on conditional quantiles, Qt(Y|X), enabling models that fit all portions of a trait probability distribution. This allows RQR to choose one quantile function that ?best? represents the relationship between the dependent and independent variables. Data were simulated for 1000 individuals. The genome included 1500 markers; most had a small effect and only a few markers with a sizable effect were simulated. We evaluated three scenarios according to symmetrical, positively, and negatively skewed distributions. Analyses were performed using Bayesian LASSO (BLASSO) and RQR considering three quantiles (0.25, 0.50, and 0.75). The use of RQR to estimate GEBV was efficient; the RQR method achieved better results than BLASSO, at least for one quantile model fit for all evaluated scenarios. The gains in relation to BLASSO were 86.28 and 55.70% for positively and negatively skewed distributions, respectively.M. Nascimento, UFV; F. F. e Silva, UFV; MARCOS DEON VILELA DE RESENDE, CNPF; C. D. Cruz, UFV; A. C. C. Nascimento, UFV; J. M. S. Viana, UFV; C. F. Azevedo, UFV; L. M. A. Barroso, UFV.NASCIMENTO, M.SILVA, F. F. eRESENDE, M. D. V. deCRUZ, C. D.NASCIMENTO, A. C. C.VIANA, J. M. S.AZEVEDO, C. F.BARROSO, L. M. A.2018-01-11T23:28:33Z2018-01-11T23:28:33Z2018-01-0320172018-01-11T23:28:33Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article12 p.Genetics and Molecular Research, v. 16, n. 1, gmr16019538, 2017.http://www.alice.cnptia.embrapa.br/alice/handle/doc/1084109enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2018-01-11T23:28:40Zoai:www.alice.cnptia.embrapa.br:doc/1084109Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542018-01-11T23:28:40falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542018-01-11T23:28:40Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Regularized quantile regression applied to genome-enabled prediction of quantitative traits.
title Regularized quantile regression applied to genome-enabled prediction of quantitative traits.
spellingShingle Regularized quantile regression applied to genome-enabled prediction of quantitative traits.
NASCIMENTO, M.
Seleção genômica
Genomic selection
Regularized regression
SNP effects
Estatística
Marker-assisted selection
Simulation models
Statistics
title_short Regularized quantile regression applied to genome-enabled prediction of quantitative traits.
title_full Regularized quantile regression applied to genome-enabled prediction of quantitative traits.
title_fullStr Regularized quantile regression applied to genome-enabled prediction of quantitative traits.
title_full_unstemmed Regularized quantile regression applied to genome-enabled prediction of quantitative traits.
title_sort Regularized quantile regression applied to genome-enabled prediction of quantitative traits.
author NASCIMENTO, M.
author_facet NASCIMENTO, M.
SILVA, F. F. e
RESENDE, M. D. V. de
CRUZ, C. D.
NASCIMENTO, A. C. C.
VIANA, J. M. S.
AZEVEDO, C. F.
BARROSO, L. M. A.
author_role author
author2 SILVA, F. F. e
RESENDE, M. D. V. de
CRUZ, C. D.
NASCIMENTO, A. C. C.
VIANA, J. M. S.
AZEVEDO, C. F.
BARROSO, L. M. A.
author2_role author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv M. Nascimento, UFV; F. F. e Silva, UFV; MARCOS DEON VILELA DE RESENDE, CNPF; C. D. Cruz, UFV; A. C. C. Nascimento, UFV; J. M. S. Viana, UFV; C. F. Azevedo, UFV; L. M. A. Barroso, UFV.
dc.contributor.author.fl_str_mv NASCIMENTO, M.
SILVA, F. F. e
RESENDE, M. D. V. de
CRUZ, C. D.
NASCIMENTO, A. C. C.
VIANA, J. M. S.
AZEVEDO, C. F.
BARROSO, L. M. A.
dc.subject.por.fl_str_mv Seleção genômica
Genomic selection
Regularized regression
SNP effects
Estatística
Marker-assisted selection
Simulation models
Statistics
topic Seleção genômica
Genomic selection
Regularized regression
SNP effects
Estatística
Marker-assisted selection
Simulation models
Statistics
description Genomic selection (GS) is a variant of marker-assisted selection, in which genetic markers covering the whole genome predict individual genetic merits for breeding. GS increases the accuracy of breeding values (BV) prediction. Although a variety of statistical models have been proposed to estimate BV in GS, few methodologies have examined statistical challenges based on non-normal phenotypic distributions, e.g., skewed distributions. Traditional GS models estimate changes in the phenotype distribution mean, i.e., the function is defined for the expected value of trait-conditional on markers, E(Y|X). We proposed an approach based on regularized quantile regression (RQR) for GS to improve the estimation of marker effects and the consequent genomic estimated BV (GEBV). The RQR model is based on conditional quantiles, Qt(Y|X), enabling models that fit all portions of a trait probability distribution. This allows RQR to choose one quantile function that ?best? represents the relationship between the dependent and independent variables. Data were simulated for 1000 individuals. The genome included 1500 markers; most had a small effect and only a few markers with a sizable effect were simulated. We evaluated three scenarios according to symmetrical, positively, and negatively skewed distributions. Analyses were performed using Bayesian LASSO (BLASSO) and RQR considering three quantiles (0.25, 0.50, and 0.75). The use of RQR to estimate GEBV was efficient; the RQR method achieved better results than BLASSO, at least for one quantile model fit for all evaluated scenarios. The gains in relation to BLASSO were 86.28 and 55.70% for positively and negatively skewed distributions, respectively.
publishDate 2017
dc.date.none.fl_str_mv 2017
2018-01-11T23:28:33Z
2018-01-11T23:28:33Z
2018-01-03
2018-01-11T23:28:33Z
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv Genetics and Molecular Research, v. 16, n. 1, gmr16019538, 2017.
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1084109
identifier_str_mv Genetics and Molecular Research, v. 16, n. 1, gmr16019538, 2017.
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/1084109
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 12 p.
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1794503447772397568