Land-cover classification in the Brazilian Amazon with the integration of Landsat ETM + and Radarsat data.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2007 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
Texto Completo: | http://www.alice.cnptia.embrapa.br/alice/handle/doc/17678 |
Resumo: | Land-cover classification with remotely sensed data in moist tropical regions in a challenge due to the complex biophysical conditions. This paper explores techniques to improve land-cover classification accuracy through a comparative analysis of different combinations of spectral signatures and textures from Landsat Enhanced Thematic Mapper Plus (ETM +) and Radarsat data. A wavelet-merging technique was used to integrate Landsat ETM + multispectral and panchromatic data or Radarsat data. Grey-level co-occurrence matrix (GLCM) textures based on Landsat ETM + panchromatic of Radarsat data and different sizes of moving windows were examined. A maximum-likelihood classifier was used to implement image classification for different combinations. This research indicates the important role of textures in improving land-cover classification accuracies in Amazonian environments. ... |
id |
EMBR_7231c2e525b6c451e8afb423bf6924f2 |
---|---|
oai_identifier_str |
oai:www.alice.cnptia.embrapa.br:doc/17678 |
network_acronym_str |
EMBR |
network_name_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository_id_str |
2154 |
spelling |
Land-cover classification in the Brazilian Amazon with the integration of Landsat ETM + and Radarsat data.AmazonLandsat ETM+land-coverLand-cover classification with remotely sensed data in moist tropical regions in a challenge due to the complex biophysical conditions. This paper explores techniques to improve land-cover classification accuracy through a comparative analysis of different combinations of spectral signatures and textures from Landsat Enhanced Thematic Mapper Plus (ETM +) and Radarsat data. A wavelet-merging technique was used to integrate Landsat ETM + multispectral and panchromatic data or Radarsat data. Grey-level co-occurrence matrix (GLCM) textures based on Landsat ETM + panchromatic of Radarsat data and different sizes of moving windows were examined. A maximum-likelihood classifier was used to implement image classification for different combinations. This research indicates the important role of textures in improving land-cover classification accuracies in Amazonian environments. ...D. Lu ( Indiana University); Batistella, M. (Embrapa Monitoramento por Satélite); E. Moran ( Indiana University Bloomington Indiana USA).LU, D.BATISTELLA, M.MORAN, E.2014-08-23T06:53:48Z2014-08-23T06:53:48Z2008-04-2220072014-08-23T06:53:48Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleInternational Journal of Remote Sensing, v. 28, n. 24, p. 5447-5459, 2007.1366-5901http://www.alice.cnptia.embrapa.br/alice/handle/doc/1767816.1080f01431160701227596enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2017-08-16T00:32:09Zoai:www.alice.cnptia.embrapa.br:doc/17678Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542017-08-16T00:32:09falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542017-08-16T00:32:09Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
Land-cover classification in the Brazilian Amazon with the integration of Landsat ETM + and Radarsat data. |
title |
Land-cover classification in the Brazilian Amazon with the integration of Landsat ETM + and Radarsat data. |
spellingShingle |
Land-cover classification in the Brazilian Amazon with the integration of Landsat ETM + and Radarsat data. LU, D. Amazon Landsat ETM+ land-cover |
title_short |
Land-cover classification in the Brazilian Amazon with the integration of Landsat ETM + and Radarsat data. |
title_full |
Land-cover classification in the Brazilian Amazon with the integration of Landsat ETM + and Radarsat data. |
title_fullStr |
Land-cover classification in the Brazilian Amazon with the integration of Landsat ETM + and Radarsat data. |
title_full_unstemmed |
Land-cover classification in the Brazilian Amazon with the integration of Landsat ETM + and Radarsat data. |
title_sort |
Land-cover classification in the Brazilian Amazon with the integration of Landsat ETM + and Radarsat data. |
author |
LU, D. |
author_facet |
LU, D. BATISTELLA, M. MORAN, E. |
author_role |
author |
author2 |
BATISTELLA, M. MORAN, E. |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
D. Lu ( Indiana University); Batistella, M. (Embrapa Monitoramento por Satélite); E. Moran ( Indiana University Bloomington Indiana USA). |
dc.contributor.author.fl_str_mv |
LU, D. BATISTELLA, M. MORAN, E. |
dc.subject.por.fl_str_mv |
Amazon Landsat ETM+ land-cover |
topic |
Amazon Landsat ETM+ land-cover |
description |
Land-cover classification with remotely sensed data in moist tropical regions in a challenge due to the complex biophysical conditions. This paper explores techniques to improve land-cover classification accuracy through a comparative analysis of different combinations of spectral signatures and textures from Landsat Enhanced Thematic Mapper Plus (ETM +) and Radarsat data. A wavelet-merging technique was used to integrate Landsat ETM + multispectral and panchromatic data or Radarsat data. Grey-level co-occurrence matrix (GLCM) textures based on Landsat ETM + panchromatic of Radarsat data and different sizes of moving windows were examined. A maximum-likelihood classifier was used to implement image classification for different combinations. This research indicates the important role of textures in improving land-cover classification accuracies in Amazonian environments. ... |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007 2008-04-22 2014-08-23T06:53:48Z 2014-08-23T06:53:48Z 2014-08-23T06:53:48Z |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
International Journal of Remote Sensing, v. 28, n. 24, p. 5447-5459, 2007. 1366-5901 http://www.alice.cnptia.embrapa.br/alice/handle/doc/17678 16.1080f01431160701227596 |
identifier_str_mv |
International Journal of Remote Sensing, v. 28, n. 24, p. 5447-5459, 2007. 1366-5901 16.1080f01431160701227596 |
url |
http://www.alice.cnptia.embrapa.br/alice/handle/doc/17678 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
collection |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository.name.fl_str_mv |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
cg-riaa@embrapa.br |
_version_ |
1794503393581989888 |