Land-cover classification in the Brazilian Amazon with the integration of Landsat ETM + and Radarsat data.

Detalhes bibliográficos
Autor(a) principal: LU, D.
Data de Publicação: 2007
Outros Autores: BATISTELLA, M., MORAN, E.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/17678
Resumo: Land-cover classification with remotely sensed data in moist tropical regions in a challenge due to the complex biophysical conditions. This paper explores techniques to improve land-cover classification accuracy through a comparative analysis of different combinations of spectral signatures and textures from Landsat Enhanced Thematic Mapper Plus (ETM +) and Radarsat data. A wavelet-merging technique was used to integrate Landsat ETM + multispectral and panchromatic data or Radarsat data. Grey-level co-occurrence matrix (GLCM) textures based on Landsat ETM + panchromatic of Radarsat data and different sizes of moving windows were examined. A maximum-likelihood classifier was used to implement image classification for different combinations. This research indicates the important role of textures in improving land-cover classification accuracies in Amazonian environments. ...
id EMBR_7231c2e525b6c451e8afb423bf6924f2
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/17678
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling Land-cover classification in the Brazilian Amazon with the integration of Landsat ETM + and Radarsat data.AmazonLandsat ETM+land-coverLand-cover classification with remotely sensed data in moist tropical regions in a challenge due to the complex biophysical conditions. This paper explores techniques to improve land-cover classification accuracy through a comparative analysis of different combinations of spectral signatures and textures from Landsat Enhanced Thematic Mapper Plus (ETM +) and Radarsat data. A wavelet-merging technique was used to integrate Landsat ETM + multispectral and panchromatic data or Radarsat data. Grey-level co-occurrence matrix (GLCM) textures based on Landsat ETM + panchromatic of Radarsat data and different sizes of moving windows were examined. A maximum-likelihood classifier was used to implement image classification for different combinations. This research indicates the important role of textures in improving land-cover classification accuracies in Amazonian environments. ...D. Lu ( Indiana University); Batistella, M. (Embrapa Monitoramento por Satélite); E. Moran ( Indiana University Bloomington Indiana USA).LU, D.BATISTELLA, M.MORAN, E.2014-08-23T06:53:48Z2014-08-23T06:53:48Z2008-04-2220072014-08-23T06:53:48Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleInternational Journal of Remote Sensing, v. 28, n. 24, p. 5447-5459, 2007.1366-5901http://www.alice.cnptia.embrapa.br/alice/handle/doc/1767816.1080f01431160701227596enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2017-08-16T00:32:09Zoai:www.alice.cnptia.embrapa.br:doc/17678Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542017-08-16T00:32:09falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542017-08-16T00:32:09Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Land-cover classification in the Brazilian Amazon with the integration of Landsat ETM + and Radarsat data.
title Land-cover classification in the Brazilian Amazon with the integration of Landsat ETM + and Radarsat data.
spellingShingle Land-cover classification in the Brazilian Amazon with the integration of Landsat ETM + and Radarsat data.
LU, D.
Amazon
Landsat ETM+
land-cover
title_short Land-cover classification in the Brazilian Amazon with the integration of Landsat ETM + and Radarsat data.
title_full Land-cover classification in the Brazilian Amazon with the integration of Landsat ETM + and Radarsat data.
title_fullStr Land-cover classification in the Brazilian Amazon with the integration of Landsat ETM + and Radarsat data.
title_full_unstemmed Land-cover classification in the Brazilian Amazon with the integration of Landsat ETM + and Radarsat data.
title_sort Land-cover classification in the Brazilian Amazon with the integration of Landsat ETM + and Radarsat data.
author LU, D.
author_facet LU, D.
BATISTELLA, M.
MORAN, E.
author_role author
author2 BATISTELLA, M.
MORAN, E.
author2_role author
author
dc.contributor.none.fl_str_mv D. Lu ( Indiana University); Batistella, M. (Embrapa Monitoramento por Satélite); E. Moran ( Indiana University Bloomington Indiana USA).
dc.contributor.author.fl_str_mv LU, D.
BATISTELLA, M.
MORAN, E.
dc.subject.por.fl_str_mv Amazon
Landsat ETM+
land-cover
topic Amazon
Landsat ETM+
land-cover
description Land-cover classification with remotely sensed data in moist tropical regions in a challenge due to the complex biophysical conditions. This paper explores techniques to improve land-cover classification accuracy through a comparative analysis of different combinations of spectral signatures and textures from Landsat Enhanced Thematic Mapper Plus (ETM +) and Radarsat data. A wavelet-merging technique was used to integrate Landsat ETM + multispectral and panchromatic data or Radarsat data. Grey-level co-occurrence matrix (GLCM) textures based on Landsat ETM + panchromatic of Radarsat data and different sizes of moving windows were examined. A maximum-likelihood classifier was used to implement image classification for different combinations. This research indicates the important role of textures in improving land-cover classification accuracies in Amazonian environments. ...
publishDate 2007
dc.date.none.fl_str_mv 2007
2008-04-22
2014-08-23T06:53:48Z
2014-08-23T06:53:48Z
2014-08-23T06:53:48Z
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv International Journal of Remote Sensing, v. 28, n. 24, p. 5447-5459, 2007.
1366-5901
http://www.alice.cnptia.embrapa.br/alice/handle/doc/17678
16.1080f01431160701227596
identifier_str_mv International Journal of Remote Sensing, v. 28, n. 24, p. 5447-5459, 2007.
1366-5901
16.1080f01431160701227596
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/17678
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1794503393581989888