Remote Detection of water and nutritional status of soybeans using UAV-based images.

Detalhes bibliográficos
Autor(a) principal: ANDRADE JUNIOR, A. S. de
Data de Publicação: 2022
Outros Autores: SILVA, S. P. da, SETÚBAL, I. S., SOUZA, H. A. de, VIEIRA, P. F. de M. J.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1142883
Resumo: Digital aerial images obtained by cameras embedded in remotely piloted aircraft (RPA) have been used to detect and monitor abiotic stresses in soybeans, such as water and nutritional deficiencies. This study aimed to evaluate the ability of vegetation indexes (VIs) from RPA images to remotely detect water and nutritional status in two soybean cultivars for nitrogen. The soybean cultivars BONUS and BRS-8980 were evaluated at the phenological stages R5 and R3 (beginning of seed enlargement), respectively. To do so, plants were subjected to two water regimes (100% ETc and 50% ETc) and two nitrogen (N) supplementation levels (with and without). Thirty-five VIs from multispectral aerial images were evaluated and correlated with stomatal conductance (gs) and leaf N content (NF) measurements. Near-infrared (NIR) spectral band, enhanced vegetation index (EVI), soil-adjusted vegetation index (SAVI), and renormalized difference vegetation index (RDVI) showed linear correlation (p<0.001) with gs, standing out as promising indexes for detection of soybean water status. In turn, simplified canopy chlorophyll content index (SCCCI), red-edge chlorophyll index (RECI), green ratio vegetation index (GRVI), and chlorophyll vegetation index (CVI) were correlated with NF (p<0.001), thus being considered promising for the detection of leaf N content in soybeans.
id EMBR_76ebd20a8c2b9833352279371f5a87ec
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/1142883
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling Remote Detection of water and nutritional status of soybeans using UAV-based images.RPATroca gasosaDroneGlycine MaxVegetation indexGas exchangeDigital aerial images obtained by cameras embedded in remotely piloted aircraft (RPA) have been used to detect and monitor abiotic stresses in soybeans, such as water and nutritional deficiencies. This study aimed to evaluate the ability of vegetation indexes (VIs) from RPA images to remotely detect water and nutritional status in two soybean cultivars for nitrogen. The soybean cultivars BONUS and BRS-8980 were evaluated at the phenological stages R5 and R3 (beginning of seed enlargement), respectively. To do so, plants were subjected to two water regimes (100% ETc and 50% ETc) and two nitrogen (N) supplementation levels (with and without). Thirty-five VIs from multispectral aerial images were evaluated and correlated with stomatal conductance (gs) and leaf N content (NF) measurements. Near-infrared (NIR) spectral band, enhanced vegetation index (EVI), soil-adjusted vegetation index (SAVI), and renormalized difference vegetation index (RDVI) showed linear correlation (p<0.001) with gs, standing out as promising indexes for detection of soybean water status. In turn, simplified canopy chlorophyll content index (SCCCI), red-edge chlorophyll index (RECI), green ratio vegetation index (GRVI), and chlorophyll vegetation index (CVI) were correlated with NF (p<0.001), thus being considered promising for the detection of leaf N content in soybeans.ADERSON SOARES DE ANDRADE JUNIOR, CPAMN; SILVESTRE P. DA SILVA, UFPI; INGRID S. SETÚBAL; HENRIQUE ANTUNES DE SOUZA, CPAMN; PAULO FERNANDO DE MELO JORGE VIEIRA, CPAMN.ANDRADE JUNIOR, A. S. deSILVA, S. P. daSETÚBAL, I. S.SOUZA, H. A. deVIEIRA, P. F. de M. J.2022-05-11T20:12:30Z2022-05-11T20:12:30Z2022-05-112022info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleEngenharia Agrícola, v. 42, n. 2, e20210177, 2022.1809-4430http://www.alice.cnptia.embrapa.br/alice/handle/doc/1142883enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2022-05-11T20:12:41Zoai:www.alice.cnptia.embrapa.br:doc/1142883Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542022-05-11T20:12:41falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542022-05-11T20:12:41Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Remote Detection of water and nutritional status of soybeans using UAV-based images.
title Remote Detection of water and nutritional status of soybeans using UAV-based images.
spellingShingle Remote Detection of water and nutritional status of soybeans using UAV-based images.
ANDRADE JUNIOR, A. S. de
RPA
Troca gasosa
Drone
Glycine Max
Vegetation index
Gas exchange
title_short Remote Detection of water and nutritional status of soybeans using UAV-based images.
title_full Remote Detection of water and nutritional status of soybeans using UAV-based images.
title_fullStr Remote Detection of water and nutritional status of soybeans using UAV-based images.
title_full_unstemmed Remote Detection of water and nutritional status of soybeans using UAV-based images.
title_sort Remote Detection of water and nutritional status of soybeans using UAV-based images.
author ANDRADE JUNIOR, A. S. de
author_facet ANDRADE JUNIOR, A. S. de
SILVA, S. P. da
SETÚBAL, I. S.
SOUZA, H. A. de
VIEIRA, P. F. de M. J.
author_role author
author2 SILVA, S. P. da
SETÚBAL, I. S.
SOUZA, H. A. de
VIEIRA, P. F. de M. J.
author2_role author
author
author
author
dc.contributor.none.fl_str_mv ADERSON SOARES DE ANDRADE JUNIOR, CPAMN; SILVESTRE P. DA SILVA, UFPI; INGRID S. SETÚBAL; HENRIQUE ANTUNES DE SOUZA, CPAMN; PAULO FERNANDO DE MELO JORGE VIEIRA, CPAMN.
dc.contributor.author.fl_str_mv ANDRADE JUNIOR, A. S. de
SILVA, S. P. da
SETÚBAL, I. S.
SOUZA, H. A. de
VIEIRA, P. F. de M. J.
dc.subject.por.fl_str_mv RPA
Troca gasosa
Drone
Glycine Max
Vegetation index
Gas exchange
topic RPA
Troca gasosa
Drone
Glycine Max
Vegetation index
Gas exchange
description Digital aerial images obtained by cameras embedded in remotely piloted aircraft (RPA) have been used to detect and monitor abiotic stresses in soybeans, such as water and nutritional deficiencies. This study aimed to evaluate the ability of vegetation indexes (VIs) from RPA images to remotely detect water and nutritional status in two soybean cultivars for nitrogen. The soybean cultivars BONUS and BRS-8980 were evaluated at the phenological stages R5 and R3 (beginning of seed enlargement), respectively. To do so, plants were subjected to two water regimes (100% ETc and 50% ETc) and two nitrogen (N) supplementation levels (with and without). Thirty-five VIs from multispectral aerial images were evaluated and correlated with stomatal conductance (gs) and leaf N content (NF) measurements. Near-infrared (NIR) spectral band, enhanced vegetation index (EVI), soil-adjusted vegetation index (SAVI), and renormalized difference vegetation index (RDVI) showed linear correlation (p<0.001) with gs, standing out as promising indexes for detection of soybean water status. In turn, simplified canopy chlorophyll content index (SCCCI), red-edge chlorophyll index (RECI), green ratio vegetation index (GRVI), and chlorophyll vegetation index (CVI) were correlated with NF (p<0.001), thus being considered promising for the detection of leaf N content in soybeans.
publishDate 2022
dc.date.none.fl_str_mv 2022-05-11T20:12:30Z
2022-05-11T20:12:30Z
2022-05-11
2022
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv Engenharia Agrícola, v. 42, n. 2, e20210177, 2022.
1809-4430
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1142883
identifier_str_mv Engenharia Agrícola, v. 42, n. 2, e20210177, 2022.
1809-4430
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/1142883
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1794503522605072384