Remote Detection of water and nutritional status of soybeans using UAV-based images.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
Texto Completo: | http://www.alice.cnptia.embrapa.br/alice/handle/doc/1142883 |
Resumo: | Digital aerial images obtained by cameras embedded in remotely piloted aircraft (RPA) have been used to detect and monitor abiotic stresses in soybeans, such as water and nutritional deficiencies. This study aimed to evaluate the ability of vegetation indexes (VIs) from RPA images to remotely detect water and nutritional status in two soybean cultivars for nitrogen. The soybean cultivars BONUS and BRS-8980 were evaluated at the phenological stages R5 and R3 (beginning of seed enlargement), respectively. To do so, plants were subjected to two water regimes (100% ETc and 50% ETc) and two nitrogen (N) supplementation levels (with and without). Thirty-five VIs from multispectral aerial images were evaluated and correlated with stomatal conductance (gs) and leaf N content (NF) measurements. Near-infrared (NIR) spectral band, enhanced vegetation index (EVI), soil-adjusted vegetation index (SAVI), and renormalized difference vegetation index (RDVI) showed linear correlation (p<0.001) with gs, standing out as promising indexes for detection of soybean water status. In turn, simplified canopy chlorophyll content index (SCCCI), red-edge chlorophyll index (RECI), green ratio vegetation index (GRVI), and chlorophyll vegetation index (CVI) were correlated with NF (p<0.001), thus being considered promising for the detection of leaf N content in soybeans. |
id |
EMBR_76ebd20a8c2b9833352279371f5a87ec |
---|---|
oai_identifier_str |
oai:www.alice.cnptia.embrapa.br:doc/1142883 |
network_acronym_str |
EMBR |
network_name_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository_id_str |
2154 |
spelling |
Remote Detection of water and nutritional status of soybeans using UAV-based images.RPATroca gasosaDroneGlycine MaxVegetation indexGas exchangeDigital aerial images obtained by cameras embedded in remotely piloted aircraft (RPA) have been used to detect and monitor abiotic stresses in soybeans, such as water and nutritional deficiencies. This study aimed to evaluate the ability of vegetation indexes (VIs) from RPA images to remotely detect water and nutritional status in two soybean cultivars for nitrogen. The soybean cultivars BONUS and BRS-8980 were evaluated at the phenological stages R5 and R3 (beginning of seed enlargement), respectively. To do so, plants were subjected to two water regimes (100% ETc and 50% ETc) and two nitrogen (N) supplementation levels (with and without). Thirty-five VIs from multispectral aerial images were evaluated and correlated with stomatal conductance (gs) and leaf N content (NF) measurements. Near-infrared (NIR) spectral band, enhanced vegetation index (EVI), soil-adjusted vegetation index (SAVI), and renormalized difference vegetation index (RDVI) showed linear correlation (p<0.001) with gs, standing out as promising indexes for detection of soybean water status. In turn, simplified canopy chlorophyll content index (SCCCI), red-edge chlorophyll index (RECI), green ratio vegetation index (GRVI), and chlorophyll vegetation index (CVI) were correlated with NF (p<0.001), thus being considered promising for the detection of leaf N content in soybeans.ADERSON SOARES DE ANDRADE JUNIOR, CPAMN; SILVESTRE P. DA SILVA, UFPI; INGRID S. SETÚBAL; HENRIQUE ANTUNES DE SOUZA, CPAMN; PAULO FERNANDO DE MELO JORGE VIEIRA, CPAMN.ANDRADE JUNIOR, A. S. deSILVA, S. P. daSETÚBAL, I. S.SOUZA, H. A. deVIEIRA, P. F. de M. J.2022-05-11T20:12:30Z2022-05-11T20:12:30Z2022-05-112022info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleEngenharia Agrícola, v. 42, n. 2, e20210177, 2022.1809-4430http://www.alice.cnptia.embrapa.br/alice/handle/doc/1142883enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2022-05-11T20:12:41Zoai:www.alice.cnptia.embrapa.br:doc/1142883Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542022-05-11T20:12:41falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542022-05-11T20:12:41Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
Remote Detection of water and nutritional status of soybeans using UAV-based images. |
title |
Remote Detection of water and nutritional status of soybeans using UAV-based images. |
spellingShingle |
Remote Detection of water and nutritional status of soybeans using UAV-based images. ANDRADE JUNIOR, A. S. de RPA Troca gasosa Drone Glycine Max Vegetation index Gas exchange |
title_short |
Remote Detection of water and nutritional status of soybeans using UAV-based images. |
title_full |
Remote Detection of water and nutritional status of soybeans using UAV-based images. |
title_fullStr |
Remote Detection of water and nutritional status of soybeans using UAV-based images. |
title_full_unstemmed |
Remote Detection of water and nutritional status of soybeans using UAV-based images. |
title_sort |
Remote Detection of water and nutritional status of soybeans using UAV-based images. |
author |
ANDRADE JUNIOR, A. S. de |
author_facet |
ANDRADE JUNIOR, A. S. de SILVA, S. P. da SETÚBAL, I. S. SOUZA, H. A. de VIEIRA, P. F. de M. J. |
author_role |
author |
author2 |
SILVA, S. P. da SETÚBAL, I. S. SOUZA, H. A. de VIEIRA, P. F. de M. J. |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
ADERSON SOARES DE ANDRADE JUNIOR, CPAMN; SILVESTRE P. DA SILVA, UFPI; INGRID S. SETÚBAL; HENRIQUE ANTUNES DE SOUZA, CPAMN; PAULO FERNANDO DE MELO JORGE VIEIRA, CPAMN. |
dc.contributor.author.fl_str_mv |
ANDRADE JUNIOR, A. S. de SILVA, S. P. da SETÚBAL, I. S. SOUZA, H. A. de VIEIRA, P. F. de M. J. |
dc.subject.por.fl_str_mv |
RPA Troca gasosa Drone Glycine Max Vegetation index Gas exchange |
topic |
RPA Troca gasosa Drone Glycine Max Vegetation index Gas exchange |
description |
Digital aerial images obtained by cameras embedded in remotely piloted aircraft (RPA) have been used to detect and monitor abiotic stresses in soybeans, such as water and nutritional deficiencies. This study aimed to evaluate the ability of vegetation indexes (VIs) from RPA images to remotely detect water and nutritional status in two soybean cultivars for nitrogen. The soybean cultivars BONUS and BRS-8980 were evaluated at the phenological stages R5 and R3 (beginning of seed enlargement), respectively. To do so, plants were subjected to two water regimes (100% ETc and 50% ETc) and two nitrogen (N) supplementation levels (with and without). Thirty-five VIs from multispectral aerial images were evaluated and correlated with stomatal conductance (gs) and leaf N content (NF) measurements. Near-infrared (NIR) spectral band, enhanced vegetation index (EVI), soil-adjusted vegetation index (SAVI), and renormalized difference vegetation index (RDVI) showed linear correlation (p<0.001) with gs, standing out as promising indexes for detection of soybean water status. In turn, simplified canopy chlorophyll content index (SCCCI), red-edge chlorophyll index (RECI), green ratio vegetation index (GRVI), and chlorophyll vegetation index (CVI) were correlated with NF (p<0.001), thus being considered promising for the detection of leaf N content in soybeans. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-05-11T20:12:30Z 2022-05-11T20:12:30Z 2022-05-11 2022 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Engenharia Agrícola, v. 42, n. 2, e20210177, 2022. 1809-4430 http://www.alice.cnptia.embrapa.br/alice/handle/doc/1142883 |
identifier_str_mv |
Engenharia Agrícola, v. 42, n. 2, e20210177, 2022. 1809-4430 |
url |
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1142883 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
collection |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository.name.fl_str_mv |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
cg-riaa@embrapa.br |
_version_ |
1794503522605072384 |