New protocol based on UHPLC-MS/MS for quantitation of metabolites in xylose-fermenting yeasts.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
Texto Completo: | http://www.alice.cnptia.embrapa.br/alice/handle/doc/1075378 |
Resumo: | Abstract: Xylose fermentation is a bottleneck in second-generation ethanol production. As such, a comprehensive understanding of xylose metabolism in naturally xylose-fermenting yeasts is essential for prospection and construction of recombinant yeast strains. The objective of the current study was to establish a reliable metabolomics protocol for quantification of key metabolites of xylose catabolism pathways in yeast, and to apply this protocol to Spathaspora arborariae. Ultra-high performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS) was used to quantify metabolites, and afterwards, sample preparation was optimized to examine yeast intracellular metabolites. S. arborariae was cultivated using xylose as a carbon source under aerobic and oxygen-limited conditions. Ion pair chromatography (IPC) and hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS) were shown to efficiently quantify 14 and 5 metabolites, respectively, in a more rapid chromatographic protocol than previously described. Thirteen and eleven metabolites were quantified in S. arborariae under aerobic and oxygen-limited conditions, respectively. This targeted metabolomics protocol is shown here to quantify a total of 19 metabolites, including sugars, phosphates, coenzymes, monosaccharides, and alcohols, from xylose catabolism pathways (glycolysis, pentose phosphate pathway, and tricarboxylic acid cycle) in yeast. Furthermore, to our knowledge, this is the first time that intracellular metabolites have been quantified in S. arborariae after xylose consumption. The results indicated that fine control of oxygen levels during fermentation is necessary to optimize ethanol production by S. arborariae. The protocol presented here may be applied to other yeast species and could support yeast genetic engineering to improve second generation ethanol production. Graphical Abstract ?. |
id |
EMBR_79852d39a086a0dabfb0979b113b2f3d |
---|---|
oai_identifier_str |
oai:www.alice.cnptia.embrapa.br:doc/1075378 |
network_acronym_str |
EMBR |
network_name_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository_id_str |
2154 |
spelling |
New protocol based on UHPLC-MS/MS for quantitation of metabolites in xylose-fermenting yeasts.Spathaspora arborariaeUHPLC-MS/MSXylose fermentationMass spectrometryMetabolomicsXyloseAbstract: Xylose fermentation is a bottleneck in second-generation ethanol production. As such, a comprehensive understanding of xylose metabolism in naturally xylose-fermenting yeasts is essential for prospection and construction of recombinant yeast strains. The objective of the current study was to establish a reliable metabolomics protocol for quantification of key metabolites of xylose catabolism pathways in yeast, and to apply this protocol to Spathaspora arborariae. Ultra-high performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS) was used to quantify metabolites, and afterwards, sample preparation was optimized to examine yeast intracellular metabolites. S. arborariae was cultivated using xylose as a carbon source under aerobic and oxygen-limited conditions. Ion pair chromatography (IPC) and hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS) were shown to efficiently quantify 14 and 5 metabolites, respectively, in a more rapid chromatographic protocol than previously described. Thirteen and eleven metabolites were quantified in S. arborariae under aerobic and oxygen-limited conditions, respectively. This targeted metabolomics protocol is shown here to quantify a total of 19 metabolites, including sugars, phosphates, coenzymes, monosaccharides, and alcohols, from xylose catabolism pathways (glycolysis, pentose phosphate pathway, and tricarboxylic acid cycle) in yeast. Furthermore, to our knowledge, this is the first time that intracellular metabolites have been quantified in S. arborariae after xylose consumption. The results indicated that fine control of oxygen levels during fermentation is necessary to optimize ethanol production by S. arborariae. The protocol presented here may be applied to other yeast species and could support yeast genetic engineering to improve second generation ethanol production. Graphical Abstract ?.CHRISTIANE GONÇALVES CAMPOS, Universidade Federal de Goiás; HENRIQUE CÉSAR TEIXEIRA VERAS, Universidade de Brasília; JOSE ANTONIO DE AQUINO RIBEIRO, CNPAE; PATRICIA PINTO KALIL G COSTA, CNPAE; KATIÚSCIA PEREIRA ARAÚJO; CLENILSON MARTINS RODRIGUES, CNPAE; JOAO RICARDO MOREIRA DE ALMEIDA, CNPAE; PATRICIA VERARDI ABDELNUR, CNPAE.CAMPOS, C. G.VERAS, H. C. T.RIBEIRO, J. A. de A.COSTA, P. P. K. G.ARAÚJO, K. P.RODRIGUES, C. M.ALMEIDA, J. R. M. deABDELNUR, P. V.2021-04-06T18:33:52Z2021-04-06T18:33:52Z2017-09-112017info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlep. 2646-2657Journal of the American Society for Mass Spectrometry, v. 28, n. 12, p. 2646-2657, 2017.http://www.alice.cnptia.embrapa.br/alice/handle/doc/107537810.1007/s13361-017-1786-9enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2021-04-06T18:34:03Zoai:www.alice.cnptia.embrapa.br:doc/1075378Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542021-04-06T18:34:03falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542021-04-06T18:34:03Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
New protocol based on UHPLC-MS/MS for quantitation of metabolites in xylose-fermenting yeasts. |
title |
New protocol based on UHPLC-MS/MS for quantitation of metabolites in xylose-fermenting yeasts. |
spellingShingle |
New protocol based on UHPLC-MS/MS for quantitation of metabolites in xylose-fermenting yeasts. CAMPOS, C. G. Spathaspora arborariae UHPLC-MS/MS Xylose fermentation Mass spectrometry Metabolomics Xylose |
title_short |
New protocol based on UHPLC-MS/MS for quantitation of metabolites in xylose-fermenting yeasts. |
title_full |
New protocol based on UHPLC-MS/MS for quantitation of metabolites in xylose-fermenting yeasts. |
title_fullStr |
New protocol based on UHPLC-MS/MS for quantitation of metabolites in xylose-fermenting yeasts. |
title_full_unstemmed |
New protocol based on UHPLC-MS/MS for quantitation of metabolites in xylose-fermenting yeasts. |
title_sort |
New protocol based on UHPLC-MS/MS for quantitation of metabolites in xylose-fermenting yeasts. |
author |
CAMPOS, C. G. |
author_facet |
CAMPOS, C. G. VERAS, H. C. T. RIBEIRO, J. A. de A. COSTA, P. P. K. G. ARAÚJO, K. P. RODRIGUES, C. M. ALMEIDA, J. R. M. de ABDELNUR, P. V. |
author_role |
author |
author2 |
VERAS, H. C. T. RIBEIRO, J. A. de A. COSTA, P. P. K. G. ARAÚJO, K. P. RODRIGUES, C. M. ALMEIDA, J. R. M. de ABDELNUR, P. V. |
author2_role |
author author author author author author author |
dc.contributor.none.fl_str_mv |
CHRISTIANE GONÇALVES CAMPOS, Universidade Federal de Goiás; HENRIQUE CÉSAR TEIXEIRA VERAS, Universidade de Brasília; JOSE ANTONIO DE AQUINO RIBEIRO, CNPAE; PATRICIA PINTO KALIL G COSTA, CNPAE; KATIÚSCIA PEREIRA ARAÚJO; CLENILSON MARTINS RODRIGUES, CNPAE; JOAO RICARDO MOREIRA DE ALMEIDA, CNPAE; PATRICIA VERARDI ABDELNUR, CNPAE. |
dc.contributor.author.fl_str_mv |
CAMPOS, C. G. VERAS, H. C. T. RIBEIRO, J. A. de A. COSTA, P. P. K. G. ARAÚJO, K. P. RODRIGUES, C. M. ALMEIDA, J. R. M. de ABDELNUR, P. V. |
dc.subject.por.fl_str_mv |
Spathaspora arborariae UHPLC-MS/MS Xylose fermentation Mass spectrometry Metabolomics Xylose |
topic |
Spathaspora arborariae UHPLC-MS/MS Xylose fermentation Mass spectrometry Metabolomics Xylose |
description |
Abstract: Xylose fermentation is a bottleneck in second-generation ethanol production. As such, a comprehensive understanding of xylose metabolism in naturally xylose-fermenting yeasts is essential for prospection and construction of recombinant yeast strains. The objective of the current study was to establish a reliable metabolomics protocol for quantification of key metabolites of xylose catabolism pathways in yeast, and to apply this protocol to Spathaspora arborariae. Ultra-high performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS) was used to quantify metabolites, and afterwards, sample preparation was optimized to examine yeast intracellular metabolites. S. arborariae was cultivated using xylose as a carbon source under aerobic and oxygen-limited conditions. Ion pair chromatography (IPC) and hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS) were shown to efficiently quantify 14 and 5 metabolites, respectively, in a more rapid chromatographic protocol than previously described. Thirteen and eleven metabolites were quantified in S. arborariae under aerobic and oxygen-limited conditions, respectively. This targeted metabolomics protocol is shown here to quantify a total of 19 metabolites, including sugars, phosphates, coenzymes, monosaccharides, and alcohols, from xylose catabolism pathways (glycolysis, pentose phosphate pathway, and tricarboxylic acid cycle) in yeast. Furthermore, to our knowledge, this is the first time that intracellular metabolites have been quantified in S. arborariae after xylose consumption. The results indicated that fine control of oxygen levels during fermentation is necessary to optimize ethanol production by S. arborariae. The protocol presented here may be applied to other yeast species and could support yeast genetic engineering to improve second generation ethanol production. Graphical Abstract ?. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-09-11 2017 2021-04-06T18:33:52Z 2021-04-06T18:33:52Z |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Journal of the American Society for Mass Spectrometry, v. 28, n. 12, p. 2646-2657, 2017. http://www.alice.cnptia.embrapa.br/alice/handle/doc/1075378 10.1007/s13361-017-1786-9 |
identifier_str_mv |
Journal of the American Society for Mass Spectrometry, v. 28, n. 12, p. 2646-2657, 2017. 10.1007/s13361-017-1786-9 |
url |
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1075378 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
p. 2646-2657 |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
collection |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository.name.fl_str_mv |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
cg-riaa@embrapa.br |
_version_ |
1794503503958245376 |