Modeling and Mapping Agroforestry Aboveground Biomass in the Brazilian Amazon Using Airborne Lidar Data.

Detalhes bibliográficos
Autor(a) principal: CHEN, Q.
Data de Publicação: 2015
Outros Autores: LU, D., KELLER, M., SANTOS, M. N. DOS, BOLFE, E. L., FENG, Y., WANG, C.
Tipo de documento: Artigo
Idioma: por
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1045916
Resumo: Agroforestry has large potential for carbon (C) sequestration while providing many economical, social, and ecological benefits via its diversified products. Airborne lidar is considered as the most accurate technology for mapping aboveground biomass (AGB) over landscape levels. However, little research in the past has been done to study AGB of agroforestry systems using airborne lidar data. Focusing on an agroforestry system in the Brazilian Amazon, this study first predicted plot-level AGB using fixed-effects regression models that assumed the regression coefficients to be constants. The model prediction errors were then analyzed from the perspectives of tree DBH (diameter at breast height)?height relationships and plot-level wood density, which suggested the need for stratifying agroforestry fields to improve plot-level AGB modeling. We separated teak plantations from other agroforestry types and predicted AGB using mixed-effects models that can incorporate the variation of AGB-height relationship across agroforestry types. We found that, at the plot scale, mixed-effects models led to better model prediction performance (based on leave-one-out cross-validation) than the fixed-effects models, with the coefficient of determination (R2) increasing from 0.38 to 0.64. At the landscape level, the difference between AGB densities from the two types of models was ~10% on average and up to ~30% at the pixel level. This study suggested the importance of stratification based on tree AGB allometry and the utility of mixed-effects models in modeling and mapping AGB of agroforestry systems.
id EMBR_8830fed86df4e0df563377b4981ac0a5
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/1045916
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling Modeling and Mapping Agroforestry Aboveground Biomass in the Brazilian Amazon Using Airborne Lidar Data.Mixed-effects modelsAgroforestryAboveground biomassLidarAllometryWood densityAgroforestry has large potential for carbon (C) sequestration while providing many economical, social, and ecological benefits via its diversified products. Airborne lidar is considered as the most accurate technology for mapping aboveground biomass (AGB) over landscape levels. However, little research in the past has been done to study AGB of agroforestry systems using airborne lidar data. Focusing on an agroforestry system in the Brazilian Amazon, this study first predicted plot-level AGB using fixed-effects regression models that assumed the regression coefficients to be constants. The model prediction errors were then analyzed from the perspectives of tree DBH (diameter at breast height)?height relationships and plot-level wood density, which suggested the need for stratifying agroforestry fields to improve plot-level AGB modeling. We separated teak plantations from other agroforestry types and predicted AGB using mixed-effects models that can incorporate the variation of AGB-height relationship across agroforestry types. We found that, at the plot scale, mixed-effects models led to better model prediction performance (based on leave-one-out cross-validation) than the fixed-effects models, with the coefficient of determination (R2) increasing from 0.38 to 0.64. At the landscape level, the difference between AGB densities from the two types of models was ~10% on average and up to ~30% at the pixel level. This study suggested the importance of stratification based on tree AGB allometry and the utility of mixed-effects models in modeling and mapping AGB of agroforestry systems.QI CHEN, Zhejiang A&F University; DENGSHENG LU, Michigan State University; MICHAEL KELLER, USDA Forest Service/ Pesquisador Visitante CNPM; MAIZA NARA DOS SANTOS, BOLSISTA CNPM; EDSON LUIS BOLFE, CNPM; YUNYUN FENG, Zhejiang A&F University; CHANGWEI WANG, University of Hawaii at Manoa.CHEN, Q.LU, D.KELLER, M.SANTOS, M. N. DOSBOLFE, E. L.FENG, Y.WANG, C.2016-05-31T11:11:11Z2016-05-31T11:11:11Z2016-05-3120152016-05-31T11:11:11Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleRemote Sensing, v. 8, n. 1, p. 1-17, 2015.http://www.alice.cnptia.embrapa.br/alice/handle/doc/104591610.3390/rs8010021porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2017-08-16T03:43:00Zoai:www.alice.cnptia.embrapa.br:doc/1045916Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542017-08-16T03:43falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542017-08-16T03:43Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Modeling and Mapping Agroforestry Aboveground Biomass in the Brazilian Amazon Using Airborne Lidar Data.
title Modeling and Mapping Agroforestry Aboveground Biomass in the Brazilian Amazon Using Airborne Lidar Data.
spellingShingle Modeling and Mapping Agroforestry Aboveground Biomass in the Brazilian Amazon Using Airborne Lidar Data.
CHEN, Q.
Mixed-effects models
Agroforestry
Aboveground biomass
Lidar
Allometry
Wood density
title_short Modeling and Mapping Agroforestry Aboveground Biomass in the Brazilian Amazon Using Airborne Lidar Data.
title_full Modeling and Mapping Agroforestry Aboveground Biomass in the Brazilian Amazon Using Airborne Lidar Data.
title_fullStr Modeling and Mapping Agroforestry Aboveground Biomass in the Brazilian Amazon Using Airborne Lidar Data.
title_full_unstemmed Modeling and Mapping Agroforestry Aboveground Biomass in the Brazilian Amazon Using Airborne Lidar Data.
title_sort Modeling and Mapping Agroforestry Aboveground Biomass in the Brazilian Amazon Using Airborne Lidar Data.
author CHEN, Q.
author_facet CHEN, Q.
LU, D.
KELLER, M.
SANTOS, M. N. DOS
BOLFE, E. L.
FENG, Y.
WANG, C.
author_role author
author2 LU, D.
KELLER, M.
SANTOS, M. N. DOS
BOLFE, E. L.
FENG, Y.
WANG, C.
author2_role author
author
author
author
author
author
dc.contributor.none.fl_str_mv QI CHEN, Zhejiang A&F University; DENGSHENG LU, Michigan State University; MICHAEL KELLER, USDA Forest Service/ Pesquisador Visitante CNPM; MAIZA NARA DOS SANTOS, BOLSISTA CNPM; EDSON LUIS BOLFE, CNPM; YUNYUN FENG, Zhejiang A&F University; CHANGWEI WANG, University of Hawaii at Manoa.
dc.contributor.author.fl_str_mv CHEN, Q.
LU, D.
KELLER, M.
SANTOS, M. N. DOS
BOLFE, E. L.
FENG, Y.
WANG, C.
dc.subject.por.fl_str_mv Mixed-effects models
Agroforestry
Aboveground biomass
Lidar
Allometry
Wood density
topic Mixed-effects models
Agroforestry
Aboveground biomass
Lidar
Allometry
Wood density
description Agroforestry has large potential for carbon (C) sequestration while providing many economical, social, and ecological benefits via its diversified products. Airborne lidar is considered as the most accurate technology for mapping aboveground biomass (AGB) over landscape levels. However, little research in the past has been done to study AGB of agroforestry systems using airborne lidar data. Focusing on an agroforestry system in the Brazilian Amazon, this study first predicted plot-level AGB using fixed-effects regression models that assumed the regression coefficients to be constants. The model prediction errors were then analyzed from the perspectives of tree DBH (diameter at breast height)?height relationships and plot-level wood density, which suggested the need for stratifying agroforestry fields to improve plot-level AGB modeling. We separated teak plantations from other agroforestry types and predicted AGB using mixed-effects models that can incorporate the variation of AGB-height relationship across agroforestry types. We found that, at the plot scale, mixed-effects models led to better model prediction performance (based on leave-one-out cross-validation) than the fixed-effects models, with the coefficient of determination (R2) increasing from 0.38 to 0.64. At the landscape level, the difference between AGB densities from the two types of models was ~10% on average and up to ~30% at the pixel level. This study suggested the importance of stratification based on tree AGB allometry and the utility of mixed-effects models in modeling and mapping AGB of agroforestry systems.
publishDate 2015
dc.date.none.fl_str_mv 2015
2016-05-31T11:11:11Z
2016-05-31T11:11:11Z
2016-05-31
2016-05-31T11:11:11Z
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv Remote Sensing, v. 8, n. 1, p. 1-17, 2015.
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1045916
10.3390/rs8010021
identifier_str_mv Remote Sensing, v. 8, n. 1, p. 1-17, 2015.
10.3390/rs8010021
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/1045916
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1794503421831675904