Modeling and Mapping Agroforestry Aboveground Biomass in the Brazilian Amazon Using Airborne Lidar Data.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
Texto Completo: | http://www.alice.cnptia.embrapa.br/alice/handle/doc/1045916 |
Resumo: | Agroforestry has large potential for carbon (C) sequestration while providing many economical, social, and ecological benefits via its diversified products. Airborne lidar is considered as the most accurate technology for mapping aboveground biomass (AGB) over landscape levels. However, little research in the past has been done to study AGB of agroforestry systems using airborne lidar data. Focusing on an agroforestry system in the Brazilian Amazon, this study first predicted plot-level AGB using fixed-effects regression models that assumed the regression coefficients to be constants. The model prediction errors were then analyzed from the perspectives of tree DBH (diameter at breast height)?height relationships and plot-level wood density, which suggested the need for stratifying agroforestry fields to improve plot-level AGB modeling. We separated teak plantations from other agroforestry types and predicted AGB using mixed-effects models that can incorporate the variation of AGB-height relationship across agroforestry types. We found that, at the plot scale, mixed-effects models led to better model prediction performance (based on leave-one-out cross-validation) than the fixed-effects models, with the coefficient of determination (R2) increasing from 0.38 to 0.64. At the landscape level, the difference between AGB densities from the two types of models was ~10% on average and up to ~30% at the pixel level. This study suggested the importance of stratification based on tree AGB allometry and the utility of mixed-effects models in modeling and mapping AGB of agroforestry systems. |
id |
EMBR_8830fed86df4e0df563377b4981ac0a5 |
---|---|
oai_identifier_str |
oai:www.alice.cnptia.embrapa.br:doc/1045916 |
network_acronym_str |
EMBR |
network_name_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository_id_str |
2154 |
spelling |
Modeling and Mapping Agroforestry Aboveground Biomass in the Brazilian Amazon Using Airborne Lidar Data.Mixed-effects modelsAgroforestryAboveground biomassLidarAllometryWood densityAgroforestry has large potential for carbon (C) sequestration while providing many economical, social, and ecological benefits via its diversified products. Airborne lidar is considered as the most accurate technology for mapping aboveground biomass (AGB) over landscape levels. However, little research in the past has been done to study AGB of agroforestry systems using airborne lidar data. Focusing on an agroforestry system in the Brazilian Amazon, this study first predicted plot-level AGB using fixed-effects regression models that assumed the regression coefficients to be constants. The model prediction errors were then analyzed from the perspectives of tree DBH (diameter at breast height)?height relationships and plot-level wood density, which suggested the need for stratifying agroforestry fields to improve plot-level AGB modeling. We separated teak plantations from other agroforestry types and predicted AGB using mixed-effects models that can incorporate the variation of AGB-height relationship across agroforestry types. We found that, at the plot scale, mixed-effects models led to better model prediction performance (based on leave-one-out cross-validation) than the fixed-effects models, with the coefficient of determination (R2) increasing from 0.38 to 0.64. At the landscape level, the difference between AGB densities from the two types of models was ~10% on average and up to ~30% at the pixel level. This study suggested the importance of stratification based on tree AGB allometry and the utility of mixed-effects models in modeling and mapping AGB of agroforestry systems.QI CHEN, Zhejiang A&F University; DENGSHENG LU, Michigan State University; MICHAEL KELLER, USDA Forest Service/ Pesquisador Visitante CNPM; MAIZA NARA DOS SANTOS, BOLSISTA CNPM; EDSON LUIS BOLFE, CNPM; YUNYUN FENG, Zhejiang A&F University; CHANGWEI WANG, University of Hawaii at Manoa.CHEN, Q.LU, D.KELLER, M.SANTOS, M. N. DOSBOLFE, E. L.FENG, Y.WANG, C.2016-05-31T11:11:11Z2016-05-31T11:11:11Z2016-05-3120152016-05-31T11:11:11Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleRemote Sensing, v. 8, n. 1, p. 1-17, 2015.http://www.alice.cnptia.embrapa.br/alice/handle/doc/104591610.3390/rs8010021porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2017-08-16T03:43:00Zoai:www.alice.cnptia.embrapa.br:doc/1045916Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542017-08-16T03:43falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542017-08-16T03:43Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
Modeling and Mapping Agroforestry Aboveground Biomass in the Brazilian Amazon Using Airborne Lidar Data. |
title |
Modeling and Mapping Agroforestry Aboveground Biomass in the Brazilian Amazon Using Airborne Lidar Data. |
spellingShingle |
Modeling and Mapping Agroforestry Aboveground Biomass in the Brazilian Amazon Using Airborne Lidar Data. CHEN, Q. Mixed-effects models Agroforestry Aboveground biomass Lidar Allometry Wood density |
title_short |
Modeling and Mapping Agroforestry Aboveground Biomass in the Brazilian Amazon Using Airborne Lidar Data. |
title_full |
Modeling and Mapping Agroforestry Aboveground Biomass in the Brazilian Amazon Using Airborne Lidar Data. |
title_fullStr |
Modeling and Mapping Agroforestry Aboveground Biomass in the Brazilian Amazon Using Airborne Lidar Data. |
title_full_unstemmed |
Modeling and Mapping Agroforestry Aboveground Biomass in the Brazilian Amazon Using Airborne Lidar Data. |
title_sort |
Modeling and Mapping Agroforestry Aboveground Biomass in the Brazilian Amazon Using Airborne Lidar Data. |
author |
CHEN, Q. |
author_facet |
CHEN, Q. LU, D. KELLER, M. SANTOS, M. N. DOS BOLFE, E. L. FENG, Y. WANG, C. |
author_role |
author |
author2 |
LU, D. KELLER, M. SANTOS, M. N. DOS BOLFE, E. L. FENG, Y. WANG, C. |
author2_role |
author author author author author author |
dc.contributor.none.fl_str_mv |
QI CHEN, Zhejiang A&F University; DENGSHENG LU, Michigan State University; MICHAEL KELLER, USDA Forest Service/ Pesquisador Visitante CNPM; MAIZA NARA DOS SANTOS, BOLSISTA CNPM; EDSON LUIS BOLFE, CNPM; YUNYUN FENG, Zhejiang A&F University; CHANGWEI WANG, University of Hawaii at Manoa. |
dc.contributor.author.fl_str_mv |
CHEN, Q. LU, D. KELLER, M. SANTOS, M. N. DOS BOLFE, E. L. FENG, Y. WANG, C. |
dc.subject.por.fl_str_mv |
Mixed-effects models Agroforestry Aboveground biomass Lidar Allometry Wood density |
topic |
Mixed-effects models Agroforestry Aboveground biomass Lidar Allometry Wood density |
description |
Agroforestry has large potential for carbon (C) sequestration while providing many economical, social, and ecological benefits via its diversified products. Airborne lidar is considered as the most accurate technology for mapping aboveground biomass (AGB) over landscape levels. However, little research in the past has been done to study AGB of agroforestry systems using airborne lidar data. Focusing on an agroforestry system in the Brazilian Amazon, this study first predicted plot-level AGB using fixed-effects regression models that assumed the regression coefficients to be constants. The model prediction errors were then analyzed from the perspectives of tree DBH (diameter at breast height)?height relationships and plot-level wood density, which suggested the need for stratifying agroforestry fields to improve plot-level AGB modeling. We separated teak plantations from other agroforestry types and predicted AGB using mixed-effects models that can incorporate the variation of AGB-height relationship across agroforestry types. We found that, at the plot scale, mixed-effects models led to better model prediction performance (based on leave-one-out cross-validation) than the fixed-effects models, with the coefficient of determination (R2) increasing from 0.38 to 0.64. At the landscape level, the difference between AGB densities from the two types of models was ~10% on average and up to ~30% at the pixel level. This study suggested the importance of stratification based on tree AGB allometry and the utility of mixed-effects models in modeling and mapping AGB of agroforestry systems. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015 2016-05-31T11:11:11Z 2016-05-31T11:11:11Z 2016-05-31 2016-05-31T11:11:11Z |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Remote Sensing, v. 8, n. 1, p. 1-17, 2015. http://www.alice.cnptia.embrapa.br/alice/handle/doc/1045916 10.3390/rs8010021 |
identifier_str_mv |
Remote Sensing, v. 8, n. 1, p. 1-17, 2015. 10.3390/rs8010021 |
url |
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1045916 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
collection |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository.name.fl_str_mv |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
cg-riaa@embrapa.br |
_version_ |
1794503421831675904 |