Nucleotide frequencies in human genome and Fibonacci numbers.

Detalhes bibliográficos
Autor(a) principal: YAMAGISHI, M. E. B.
Data de Publicação: 2007
Outros Autores: SHIMABUKURO, A. I.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1091
Resumo: Abstract. This work presents a mathematical model that establishes an interesting connection between nucleotide frequencies in human single-stranded DNA and the famous Fibonacci's numbers. The model relies on two assumptions. First, Chargaff's second parity rule should be valid, and second, the nucleotide frequencies should approach limit values when the number of bases is sufficiently large. Under these two hypotheses, it is possible to predict the human nucleotide frequencies with accuracy. This result may be used as evidence to the Fibonacci string model that was proposed to the sequence growth of DNA repetitive sequences. It is noteworthy that the predicted values are solutions of an optimization problem, which is commonplace in many of nature's phenomena.
id EMBR_8c1bdeabdebfba9da18bbdf584e20d00
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/1091
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling Nucleotide frequencies in human genome and Fibonacci numbers.Genoma humanoNúmeros de FibonacciNucleotide frequenciesChargaff's parity rulesFibonacci numbersOptimization problemModelo matemáticoMathematical modelsSystem optimizationRepetitive sequencesNucleotidesAbstract. This work presents a mathematical model that establishes an interesting connection between nucleotide frequencies in human single-stranded DNA and the famous Fibonacci's numbers. The model relies on two assumptions. First, Chargaff's second parity rule should be valid, and second, the nucleotide frequencies should approach limit values when the number of bases is sufficiently large. Under these two hypotheses, it is possible to predict the human nucleotide frequencies with accuracy. This result may be used as evidence to the Fibonacci string model that was proposed to the sequence growth of DNA repetitive sequences. It is noteworthy that the predicted values are solutions of an optimization problem, which is commonplace in many of nature's phenomena.MICHEL EDUARDO BELEZA YAMAGISHI, CNPTIA; ALEX ITIRO SHIMABUKURO, PUC-Campinas.YAMAGISHI, M. E. B.SHIMABUKURO, A. I.2011-04-10T11:11:11Z2011-04-10T11:11:11Z2007-12-1020082017-05-11T11:11:11Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleBulletin of Mathematical Biology, v. 70, n. 3, p. 643-653, Apr. 2008.http://www.alice.cnptia.embrapa.br/alice/handle/doc/109110.1007/s11538-007-9261-6enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2017-08-16T04:23:56Zoai:www.alice.cnptia.embrapa.br:doc/1091Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542017-08-16T04:23:56falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542017-08-16T04:23:56Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Nucleotide frequencies in human genome and Fibonacci numbers.
title Nucleotide frequencies in human genome and Fibonacci numbers.
spellingShingle Nucleotide frequencies in human genome and Fibonacci numbers.
YAMAGISHI, M. E. B.
Genoma humano
Números de Fibonacci
Nucleotide frequencies
Chargaff's parity rules
Fibonacci numbers
Optimization problem
Modelo matemático
Mathematical models
System optimization
Repetitive sequences
Nucleotides
title_short Nucleotide frequencies in human genome and Fibonacci numbers.
title_full Nucleotide frequencies in human genome and Fibonacci numbers.
title_fullStr Nucleotide frequencies in human genome and Fibonacci numbers.
title_full_unstemmed Nucleotide frequencies in human genome and Fibonacci numbers.
title_sort Nucleotide frequencies in human genome and Fibonacci numbers.
author YAMAGISHI, M. E. B.
author_facet YAMAGISHI, M. E. B.
SHIMABUKURO, A. I.
author_role author
author2 SHIMABUKURO, A. I.
author2_role author
dc.contributor.none.fl_str_mv MICHEL EDUARDO BELEZA YAMAGISHI, CNPTIA; ALEX ITIRO SHIMABUKURO, PUC-Campinas.
dc.contributor.author.fl_str_mv YAMAGISHI, M. E. B.
SHIMABUKURO, A. I.
dc.subject.por.fl_str_mv Genoma humano
Números de Fibonacci
Nucleotide frequencies
Chargaff's parity rules
Fibonacci numbers
Optimization problem
Modelo matemático
Mathematical models
System optimization
Repetitive sequences
Nucleotides
topic Genoma humano
Números de Fibonacci
Nucleotide frequencies
Chargaff's parity rules
Fibonacci numbers
Optimization problem
Modelo matemático
Mathematical models
System optimization
Repetitive sequences
Nucleotides
description Abstract. This work presents a mathematical model that establishes an interesting connection between nucleotide frequencies in human single-stranded DNA and the famous Fibonacci's numbers. The model relies on two assumptions. First, Chargaff's second parity rule should be valid, and second, the nucleotide frequencies should approach limit values when the number of bases is sufficiently large. Under these two hypotheses, it is possible to predict the human nucleotide frequencies with accuracy. This result may be used as evidence to the Fibonacci string model that was proposed to the sequence growth of DNA repetitive sequences. It is noteworthy that the predicted values are solutions of an optimization problem, which is commonplace in many of nature's phenomena.
publishDate 2007
dc.date.none.fl_str_mv 2007-12-10
2008
2011-04-10T11:11:11Z
2011-04-10T11:11:11Z
2017-05-11T11:11:11Z
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv Bulletin of Mathematical Biology, v. 70, n. 3, p. 643-653, Apr. 2008.
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1091
10.1007/s11538-007-9261-6
identifier_str_mv Bulletin of Mathematical Biology, v. 70, n. 3, p. 643-653, Apr. 2008.
10.1007/s11538-007-9261-6
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/1091
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1794503436001083392