Nucleotide frequencies in human genome and Fibonacci numbers.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2007 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
Texto Completo: | http://www.alice.cnptia.embrapa.br/alice/handle/doc/1091 |
Resumo: | Abstract. This work presents a mathematical model that establishes an interesting connection between nucleotide frequencies in human single-stranded DNA and the famous Fibonacci's numbers. The model relies on two assumptions. First, Chargaff's second parity rule should be valid, and second, the nucleotide frequencies should approach limit values when the number of bases is sufficiently large. Under these two hypotheses, it is possible to predict the human nucleotide frequencies with accuracy. This result may be used as evidence to the Fibonacci string model that was proposed to the sequence growth of DNA repetitive sequences. It is noteworthy that the predicted values are solutions of an optimization problem, which is commonplace in many of nature's phenomena. |
id |
EMBR_8c1bdeabdebfba9da18bbdf584e20d00 |
---|---|
oai_identifier_str |
oai:www.alice.cnptia.embrapa.br:doc/1091 |
network_acronym_str |
EMBR |
network_name_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository_id_str |
2154 |
spelling |
Nucleotide frequencies in human genome and Fibonacci numbers.Genoma humanoNúmeros de FibonacciNucleotide frequenciesChargaff's parity rulesFibonacci numbersOptimization problemModelo matemáticoMathematical modelsSystem optimizationRepetitive sequencesNucleotidesAbstract. This work presents a mathematical model that establishes an interesting connection between nucleotide frequencies in human single-stranded DNA and the famous Fibonacci's numbers. The model relies on two assumptions. First, Chargaff's second parity rule should be valid, and second, the nucleotide frequencies should approach limit values when the number of bases is sufficiently large. Under these two hypotheses, it is possible to predict the human nucleotide frequencies with accuracy. This result may be used as evidence to the Fibonacci string model that was proposed to the sequence growth of DNA repetitive sequences. It is noteworthy that the predicted values are solutions of an optimization problem, which is commonplace in many of nature's phenomena.MICHEL EDUARDO BELEZA YAMAGISHI, CNPTIA; ALEX ITIRO SHIMABUKURO, PUC-Campinas.YAMAGISHI, M. E. B.SHIMABUKURO, A. I.2011-04-10T11:11:11Z2011-04-10T11:11:11Z2007-12-1020082017-05-11T11:11:11Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleBulletin of Mathematical Biology, v. 70, n. 3, p. 643-653, Apr. 2008.http://www.alice.cnptia.embrapa.br/alice/handle/doc/109110.1007/s11538-007-9261-6enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2017-08-16T04:23:56Zoai:www.alice.cnptia.embrapa.br:doc/1091Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542017-08-16T04:23:56falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542017-08-16T04:23:56Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
Nucleotide frequencies in human genome and Fibonacci numbers. |
title |
Nucleotide frequencies in human genome and Fibonacci numbers. |
spellingShingle |
Nucleotide frequencies in human genome and Fibonacci numbers. YAMAGISHI, M. E. B. Genoma humano Números de Fibonacci Nucleotide frequencies Chargaff's parity rules Fibonacci numbers Optimization problem Modelo matemático Mathematical models System optimization Repetitive sequences Nucleotides |
title_short |
Nucleotide frequencies in human genome and Fibonacci numbers. |
title_full |
Nucleotide frequencies in human genome and Fibonacci numbers. |
title_fullStr |
Nucleotide frequencies in human genome and Fibonacci numbers. |
title_full_unstemmed |
Nucleotide frequencies in human genome and Fibonacci numbers. |
title_sort |
Nucleotide frequencies in human genome and Fibonacci numbers. |
author |
YAMAGISHI, M. E. B. |
author_facet |
YAMAGISHI, M. E. B. SHIMABUKURO, A. I. |
author_role |
author |
author2 |
SHIMABUKURO, A. I. |
author2_role |
author |
dc.contributor.none.fl_str_mv |
MICHEL EDUARDO BELEZA YAMAGISHI, CNPTIA; ALEX ITIRO SHIMABUKURO, PUC-Campinas. |
dc.contributor.author.fl_str_mv |
YAMAGISHI, M. E. B. SHIMABUKURO, A. I. |
dc.subject.por.fl_str_mv |
Genoma humano Números de Fibonacci Nucleotide frequencies Chargaff's parity rules Fibonacci numbers Optimization problem Modelo matemático Mathematical models System optimization Repetitive sequences Nucleotides |
topic |
Genoma humano Números de Fibonacci Nucleotide frequencies Chargaff's parity rules Fibonacci numbers Optimization problem Modelo matemático Mathematical models System optimization Repetitive sequences Nucleotides |
description |
Abstract. This work presents a mathematical model that establishes an interesting connection between nucleotide frequencies in human single-stranded DNA and the famous Fibonacci's numbers. The model relies on two assumptions. First, Chargaff's second parity rule should be valid, and second, the nucleotide frequencies should approach limit values when the number of bases is sufficiently large. Under these two hypotheses, it is possible to predict the human nucleotide frequencies with accuracy. This result may be used as evidence to the Fibonacci string model that was proposed to the sequence growth of DNA repetitive sequences. It is noteworthy that the predicted values are solutions of an optimization problem, which is commonplace in many of nature's phenomena. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-12-10 2008 2011-04-10T11:11:11Z 2011-04-10T11:11:11Z 2017-05-11T11:11:11Z |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Bulletin of Mathematical Biology, v. 70, n. 3, p. 643-653, Apr. 2008. http://www.alice.cnptia.embrapa.br/alice/handle/doc/1091 10.1007/s11538-007-9261-6 |
identifier_str_mv |
Bulletin of Mathematical Biology, v. 70, n. 3, p. 643-653, Apr. 2008. 10.1007/s11538-007-9261-6 |
url |
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1091 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
collection |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository.name.fl_str_mv |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
cg-riaa@embrapa.br |
_version_ |
1794503436001083392 |