Zero-inflated Poisson regression models for QTL mapping applied to tick-resistance in a Gyr x Holstein F2 population.

Detalhes bibliográficos
Autor(a) principal: SILVA, F. F.
Data de Publicação: 2011
Outros Autores: TUNIN, K. P., ROSA, G. J. M., SILVA, M. V. G. B., AZEVEDO, A. L. S., VERNEQUE, R. da S., MACHADO, M. A., PACKER, I. U.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/911787
https://doi.org/10.1590/S1415-47572011005000049
Resumo: Nowadays, an important and interesting alternative in the control of tick-infestation in cattle is to select resistant animals, and identify the respective quantitative trait loci (QTLs) and DNA markers, for posterior use in breeding programs. The number of ticks/animal is characterized as a discrete-counting trait, which could potentially follow Poisson distribution. However, in the case of an excess of zeros, due to the occurrence of several noninfected animals, zero-inflated Poisson and generalized zero-inflated distribution (GZIP) may provide a better description of the data. Thus, the objective here was to compare through simulation, Poisson and ZIP models (simple and generalized) with classical approaches, for QTL mapping with counting phenotypes under different scenarios, and to apply these approaches to a QTL study of tick resistance in an F2 cattle (Gyr x Holstein) population. It was concluded that, when working with zero-inflated data, it is recommendable to use the generalized and simple ZIP model for analysis. On the other hand, when working with data with zeros, but not zero-inflated, the Poisson model or a data-transformation-approach, such as square-root or Box-Cox transformation, are applicable.
id EMBR_911dc06d246fbc29bd6d672d92d24eb9
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/911787
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling Zero-inflated Poisson regression models for QTL mapping applied to tick-resistance in a Gyr x Holstein F2 population.Tick infestationQTL regressionGeneralized linear modeldairy cattleNowadays, an important and interesting alternative in the control of tick-infestation in cattle is to select resistant animals, and identify the respective quantitative trait loci (QTLs) and DNA markers, for posterior use in breeding programs. The number of ticks/animal is characterized as a discrete-counting trait, which could potentially follow Poisson distribution. However, in the case of an excess of zeros, due to the occurrence of several noninfected animals, zero-inflated Poisson and generalized zero-inflated distribution (GZIP) may provide a better description of the data. Thus, the objective here was to compare through simulation, Poisson and ZIP models (simple and generalized) with classical approaches, for QTL mapping with counting phenotypes under different scenarios, and to apply these approaches to a QTL study of tick resistance in an F2 cattle (Gyr x Holstein) population. It was concluded that, when working with zero-inflated data, it is recommendable to use the generalized and simple ZIP model for analysis. On the other hand, when working with data with zeros, but not zero-inflated, the Poisson model or a data-transformation-approach, such as square-root or Box-Cox transformation, are applicable.FABYANO FONSECA SILVA, UFV; University of Wisconsin; KAREN P. TUNIN, USP; University of Wisconsin; GUILHERME J. M. ROSA, University of Wisconsin; MARCOS VINICIUS GUALBERTO B SILVA, CNPGL; ANA LUISA SOUSA AZEVEDO, CNPGL; RUI DA SILVA VERNEQUE, CNPGL; MARCO ANTONIO MACHADO, CNPGL; IRINEU UMBERTO PACKER, USP.SILVA, F. F.TUNIN, K. P.ROSA, G. J. M.SILVA, M. V. G. B.AZEVEDO, A. L. S.VERNEQUE, R. da S.MACHADO, M. A.PACKER, I. U.2024-02-06T11:33:14Z2024-02-06T11:33:14Z2012-01-052011info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleGenetics and Molecular Biology, v. 34, n. 4, p. 575-581, 2011.http://www.alice.cnptia.embrapa.br/alice/handle/doc/911787https://doi.org/10.1590/S1415-47572011005000049enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2024-02-06T11:33:14Zoai:www.alice.cnptia.embrapa.br:doc/911787Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542024-02-06T11:33:14Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Zero-inflated Poisson regression models for QTL mapping applied to tick-resistance in a Gyr x Holstein F2 population.
title Zero-inflated Poisson regression models for QTL mapping applied to tick-resistance in a Gyr x Holstein F2 population.
spellingShingle Zero-inflated Poisson regression models for QTL mapping applied to tick-resistance in a Gyr x Holstein F2 population.
SILVA, F. F.
Tick infestation
QTL regression
Generalized linear model
dairy cattle
title_short Zero-inflated Poisson regression models for QTL mapping applied to tick-resistance in a Gyr x Holstein F2 population.
title_full Zero-inflated Poisson regression models for QTL mapping applied to tick-resistance in a Gyr x Holstein F2 population.
title_fullStr Zero-inflated Poisson regression models for QTL mapping applied to tick-resistance in a Gyr x Holstein F2 population.
title_full_unstemmed Zero-inflated Poisson regression models for QTL mapping applied to tick-resistance in a Gyr x Holstein F2 population.
title_sort Zero-inflated Poisson regression models for QTL mapping applied to tick-resistance in a Gyr x Holstein F2 population.
author SILVA, F. F.
author_facet SILVA, F. F.
TUNIN, K. P.
ROSA, G. J. M.
SILVA, M. V. G. B.
AZEVEDO, A. L. S.
VERNEQUE, R. da S.
MACHADO, M. A.
PACKER, I. U.
author_role author
author2 TUNIN, K. P.
ROSA, G. J. M.
SILVA, M. V. G. B.
AZEVEDO, A. L. S.
VERNEQUE, R. da S.
MACHADO, M. A.
PACKER, I. U.
author2_role author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv FABYANO FONSECA SILVA, UFV; University of Wisconsin; KAREN P. TUNIN, USP; University of Wisconsin; GUILHERME J. M. ROSA, University of Wisconsin; MARCOS VINICIUS GUALBERTO B SILVA, CNPGL; ANA LUISA SOUSA AZEVEDO, CNPGL; RUI DA SILVA VERNEQUE, CNPGL; MARCO ANTONIO MACHADO, CNPGL; IRINEU UMBERTO PACKER, USP.
dc.contributor.author.fl_str_mv SILVA, F. F.
TUNIN, K. P.
ROSA, G. J. M.
SILVA, M. V. G. B.
AZEVEDO, A. L. S.
VERNEQUE, R. da S.
MACHADO, M. A.
PACKER, I. U.
dc.subject.por.fl_str_mv Tick infestation
QTL regression
Generalized linear model
dairy cattle
topic Tick infestation
QTL regression
Generalized linear model
dairy cattle
description Nowadays, an important and interesting alternative in the control of tick-infestation in cattle is to select resistant animals, and identify the respective quantitative trait loci (QTLs) and DNA markers, for posterior use in breeding programs. The number of ticks/animal is characterized as a discrete-counting trait, which could potentially follow Poisson distribution. However, in the case of an excess of zeros, due to the occurrence of several noninfected animals, zero-inflated Poisson and generalized zero-inflated distribution (GZIP) may provide a better description of the data. Thus, the objective here was to compare through simulation, Poisson and ZIP models (simple and generalized) with classical approaches, for QTL mapping with counting phenotypes under different scenarios, and to apply these approaches to a QTL study of tick resistance in an F2 cattle (Gyr x Holstein) population. It was concluded that, when working with zero-inflated data, it is recommendable to use the generalized and simple ZIP model for analysis. On the other hand, when working with data with zeros, but not zero-inflated, the Poisson model or a data-transformation-approach, such as square-root or Box-Cox transformation, are applicable.
publishDate 2011
dc.date.none.fl_str_mv 2011
2012-01-05
2024-02-06T11:33:14Z
2024-02-06T11:33:14Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv Genetics and Molecular Biology, v. 34, n. 4, p. 575-581, 2011.
http://www.alice.cnptia.embrapa.br/alice/handle/doc/911787
https://doi.org/10.1590/S1415-47572011005000049
identifier_str_mv Genetics and Molecular Biology, v. 34, n. 4, p. 575-581, 2011.
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/911787
https://doi.org/10.1590/S1415-47572011005000049
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1817695694681538560