Zero-inflated Poisson regression models for QTL mapping applied to tick-resistance in a Gyr x Holstein F2 population.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Outros Autores: | , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
Texto Completo: | http://www.alice.cnptia.embrapa.br/alice/handle/doc/911787 https://doi.org/10.1590/S1415-47572011005000049 |
Resumo: | Nowadays, an important and interesting alternative in the control of tick-infestation in cattle is to select resistant animals, and identify the respective quantitative trait loci (QTLs) and DNA markers, for posterior use in breeding programs. The number of ticks/animal is characterized as a discrete-counting trait, which could potentially follow Poisson distribution. However, in the case of an excess of zeros, due to the occurrence of several noninfected animals, zero-inflated Poisson and generalized zero-inflated distribution (GZIP) may provide a better description of the data. Thus, the objective here was to compare through simulation, Poisson and ZIP models (simple and generalized) with classical approaches, for QTL mapping with counting phenotypes under different scenarios, and to apply these approaches to a QTL study of tick resistance in an F2 cattle (Gyr x Holstein) population. It was concluded that, when working with zero-inflated data, it is recommendable to use the generalized and simple ZIP model for analysis. On the other hand, when working with data with zeros, but not zero-inflated, the Poisson model or a data-transformation-approach, such as square-root or Box-Cox transformation, are applicable. |
id |
EMBR_911dc06d246fbc29bd6d672d92d24eb9 |
---|---|
oai_identifier_str |
oai:www.alice.cnptia.embrapa.br:doc/911787 |
network_acronym_str |
EMBR |
network_name_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository_id_str |
2154 |
spelling |
Zero-inflated Poisson regression models for QTL mapping applied to tick-resistance in a Gyr x Holstein F2 population.Tick infestationQTL regressionGeneralized linear modeldairy cattleNowadays, an important and interesting alternative in the control of tick-infestation in cattle is to select resistant animals, and identify the respective quantitative trait loci (QTLs) and DNA markers, for posterior use in breeding programs. The number of ticks/animal is characterized as a discrete-counting trait, which could potentially follow Poisson distribution. However, in the case of an excess of zeros, due to the occurrence of several noninfected animals, zero-inflated Poisson and generalized zero-inflated distribution (GZIP) may provide a better description of the data. Thus, the objective here was to compare through simulation, Poisson and ZIP models (simple and generalized) with classical approaches, for QTL mapping with counting phenotypes under different scenarios, and to apply these approaches to a QTL study of tick resistance in an F2 cattle (Gyr x Holstein) population. It was concluded that, when working with zero-inflated data, it is recommendable to use the generalized and simple ZIP model for analysis. On the other hand, when working with data with zeros, but not zero-inflated, the Poisson model or a data-transformation-approach, such as square-root or Box-Cox transformation, are applicable.FABYANO FONSECA SILVA, UFV; University of Wisconsin; KAREN P. TUNIN, USP; University of Wisconsin; GUILHERME J. M. ROSA, University of Wisconsin; MARCOS VINICIUS GUALBERTO B SILVA, CNPGL; ANA LUISA SOUSA AZEVEDO, CNPGL; RUI DA SILVA VERNEQUE, CNPGL; MARCO ANTONIO MACHADO, CNPGL; IRINEU UMBERTO PACKER, USP.SILVA, F. F.TUNIN, K. P.ROSA, G. J. M.SILVA, M. V. G. B.AZEVEDO, A. L. S.VERNEQUE, R. da S.MACHADO, M. A.PACKER, I. U.2024-02-06T11:33:14Z2024-02-06T11:33:14Z2012-01-052011info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleGenetics and Molecular Biology, v. 34, n. 4, p. 575-581, 2011.http://www.alice.cnptia.embrapa.br/alice/handle/doc/911787https://doi.org/10.1590/S1415-47572011005000049enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2024-02-06T11:33:14Zoai:www.alice.cnptia.embrapa.br:doc/911787Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542024-02-06T11:33:14Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
Zero-inflated Poisson regression models for QTL mapping applied to tick-resistance in a Gyr x Holstein F2 population. |
title |
Zero-inflated Poisson regression models for QTL mapping applied to tick-resistance in a Gyr x Holstein F2 population. |
spellingShingle |
Zero-inflated Poisson regression models for QTL mapping applied to tick-resistance in a Gyr x Holstein F2 population. SILVA, F. F. Tick infestation QTL regression Generalized linear model dairy cattle |
title_short |
Zero-inflated Poisson regression models for QTL mapping applied to tick-resistance in a Gyr x Holstein F2 population. |
title_full |
Zero-inflated Poisson regression models for QTL mapping applied to tick-resistance in a Gyr x Holstein F2 population. |
title_fullStr |
Zero-inflated Poisson regression models for QTL mapping applied to tick-resistance in a Gyr x Holstein F2 population. |
title_full_unstemmed |
Zero-inflated Poisson regression models for QTL mapping applied to tick-resistance in a Gyr x Holstein F2 population. |
title_sort |
Zero-inflated Poisson regression models for QTL mapping applied to tick-resistance in a Gyr x Holstein F2 population. |
author |
SILVA, F. F. |
author_facet |
SILVA, F. F. TUNIN, K. P. ROSA, G. J. M. SILVA, M. V. G. B. AZEVEDO, A. L. S. VERNEQUE, R. da S. MACHADO, M. A. PACKER, I. U. |
author_role |
author |
author2 |
TUNIN, K. P. ROSA, G. J. M. SILVA, M. V. G. B. AZEVEDO, A. L. S. VERNEQUE, R. da S. MACHADO, M. A. PACKER, I. U. |
author2_role |
author author author author author author author |
dc.contributor.none.fl_str_mv |
FABYANO FONSECA SILVA, UFV; University of Wisconsin; KAREN P. TUNIN, USP; University of Wisconsin; GUILHERME J. M. ROSA, University of Wisconsin; MARCOS VINICIUS GUALBERTO B SILVA, CNPGL; ANA LUISA SOUSA AZEVEDO, CNPGL; RUI DA SILVA VERNEQUE, CNPGL; MARCO ANTONIO MACHADO, CNPGL; IRINEU UMBERTO PACKER, USP. |
dc.contributor.author.fl_str_mv |
SILVA, F. F. TUNIN, K. P. ROSA, G. J. M. SILVA, M. V. G. B. AZEVEDO, A. L. S. VERNEQUE, R. da S. MACHADO, M. A. PACKER, I. U. |
dc.subject.por.fl_str_mv |
Tick infestation QTL regression Generalized linear model dairy cattle |
topic |
Tick infestation QTL regression Generalized linear model dairy cattle |
description |
Nowadays, an important and interesting alternative in the control of tick-infestation in cattle is to select resistant animals, and identify the respective quantitative trait loci (QTLs) and DNA markers, for posterior use in breeding programs. The number of ticks/animal is characterized as a discrete-counting trait, which could potentially follow Poisson distribution. However, in the case of an excess of zeros, due to the occurrence of several noninfected animals, zero-inflated Poisson and generalized zero-inflated distribution (GZIP) may provide a better description of the data. Thus, the objective here was to compare through simulation, Poisson and ZIP models (simple and generalized) with classical approaches, for QTL mapping with counting phenotypes under different scenarios, and to apply these approaches to a QTL study of tick resistance in an F2 cattle (Gyr x Holstein) population. It was concluded that, when working with zero-inflated data, it is recommendable to use the generalized and simple ZIP model for analysis. On the other hand, when working with data with zeros, but not zero-inflated, the Poisson model or a data-transformation-approach, such as square-root or Box-Cox transformation, are applicable. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011 2012-01-05 2024-02-06T11:33:14Z 2024-02-06T11:33:14Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Genetics and Molecular Biology, v. 34, n. 4, p. 575-581, 2011. http://www.alice.cnptia.embrapa.br/alice/handle/doc/911787 https://doi.org/10.1590/S1415-47572011005000049 |
identifier_str_mv |
Genetics and Molecular Biology, v. 34, n. 4, p. 575-581, 2011. |
url |
http://www.alice.cnptia.embrapa.br/alice/handle/doc/911787 https://doi.org/10.1590/S1415-47572011005000049 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
collection |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository.name.fl_str_mv |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
cg-riaa@embrapa.br |
_version_ |
1817695694681538560 |