Proximal hyperspectral analysis in grape leaves for region and variety identification.

Detalhes bibliográficos
Autor(a) principal: ARRUDA, D. C. de
Data de Publicação: 2023
Outros Autores: DUCATI, J. R., HOFF, R., BELLOLI, T. F., THUM, A. B.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1154498
http://doi.org/10.1590/0103-8478cr20220313
Resumo: Reflectance measurements of plants of the same species can produce sets of data with differences between spectra, due to factors that can be external to the plant, like the environment where the plant grows, and to internal factors, for measurements of different varieties. This paper reports results of the analysis of radiometric measurements performed on leaves of vines of several grape varieties and on several sites. The objective of the research was, after the application of techniques of dimensionality reduction for the definition of the most relevant wavelengths, to evaluate four machine learning models applied to the observational sample aiming to discriminate classes of region and variety in vineyards. The tested machine learning classification models were Canonical Discrimination Analysis (CDA), Light Gradient Boosting Machine (LGBM), Random Forest (RF), and Support Vector Machine (SVM). From the results, we reported that the LGBM model obtained better accuracy in spectral discrimination by region, with a value the 0.93, followed by the RF model. Regarding the discrimination between grape varieties, these two models also achieved better results, with accuracies of 0.88 and 0.89. The wavelengths more relevant for discrimination were at ultraviolet, followed by those at blue and green spectral regions. This research pointed toward the importance of defining the wavelengths more relevant to the characterization of the reflectance spectra of leaves of grape varieties and revealed the effective capability of discriminating vineyards by their region or grape variety, using machine learning models. Análise hiperespectral proximal em folhas de videiras para identificação de regiões e variedades RESUMO: Medições de refletância de plantas da mesma espécie podem produzir conjuntos de dados com diferenças entre os espectros, devido a fatores que podem ser externos à planta, como o ambiente onde a planta cresce, e fatores internos, para medições com variedades de plantas. Este artigo reporta resultados da análise de medições por espectrorradiometria efetuadas em folhas de vinhas de variedades e em diferentes localidades. O objetivo desta pesquisa foi, após a aplicação de técnicas de redução de dimensionalidade para a definição dos comprimentos de onda mais relevantes, avaliar quatro modelos de aprendizado de máquina aplicados à amostra observacional visando discriminar classes de região e variedade. Os modelos de classificação de aprendizado de máquina testados foram Canonical Discrimination Analysis (CDA), Light Gradient Boosting Machine (LGBM), Random Forest (RF) e Support Vector Machine (SVM). A partir dos resultados, relatamos que o modelo LGBM obteve melhor acurácia na discriminação espectral por região, com valor de 0,93, seguido pelo modelo RF. Relativamente à discriminação entre castas, estes dois modelos também obtiveram melhores resultados, com acurácias de 0,88 e 0,89. Os comprimentos de onda mais importantes para as discriminações procuradas estiveram na região do ultravioleta, seguidos do azul e do verde. Este trabalho aponta para a importância de detectar os comprimentos de onda mais relevantes para a caracterização dos espectros de reflectância das folhas de variedades de vinhas, e revela a capacidade efetiva de discriminar vinhedos por suas regiões ou variedades, usando modelos de aprendizado de máquina. Palavras-chave: Vinhedos, hiperespectral, aprendizagem de máquina.
id EMBR_945e7841ece4b992a6fd34ad469287e4
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/1154498
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling Proximal hyperspectral analysis in grape leaves for region and variety identification.SpectroradiometerHyperspectralMachine learningVinhedosHiperespectralAprendizagem de máquinaVineyardsHyperspectral imageryReflectance measurements of plants of the same species can produce sets of data with differences between spectra, due to factors that can be external to the plant, like the environment where the plant grows, and to internal factors, for measurements of different varieties. This paper reports results of the analysis of radiometric measurements performed on leaves of vines of several grape varieties and on several sites. The objective of the research was, after the application of techniques of dimensionality reduction for the definition of the most relevant wavelengths, to evaluate four machine learning models applied to the observational sample aiming to discriminate classes of region and variety in vineyards. The tested machine learning classification models were Canonical Discrimination Analysis (CDA), Light Gradient Boosting Machine (LGBM), Random Forest (RF), and Support Vector Machine (SVM). From the results, we reported that the LGBM model obtained better accuracy in spectral discrimination by region, with a value the 0.93, followed by the RF model. Regarding the discrimination between grape varieties, these two models also achieved better results, with accuracies of 0.88 and 0.89. The wavelengths more relevant for discrimination were at ultraviolet, followed by those at blue and green spectral regions. This research pointed toward the importance of defining the wavelengths more relevant to the characterization of the reflectance spectra of leaves of grape varieties and revealed the effective capability of discriminating vineyards by their region or grape variety, using machine learning models. Análise hiperespectral proximal em folhas de videiras para identificação de regiões e variedades RESUMO: Medições de refletância de plantas da mesma espécie podem produzir conjuntos de dados com diferenças entre os espectros, devido a fatores que podem ser externos à planta, como o ambiente onde a planta cresce, e fatores internos, para medições com variedades de plantas. Este artigo reporta resultados da análise de medições por espectrorradiometria efetuadas em folhas de vinhas de variedades e em diferentes localidades. O objetivo desta pesquisa foi, após a aplicação de técnicas de redução de dimensionalidade para a definição dos comprimentos de onda mais relevantes, avaliar quatro modelos de aprendizado de máquina aplicados à amostra observacional visando discriminar classes de região e variedade. Os modelos de classificação de aprendizado de máquina testados foram Canonical Discrimination Analysis (CDA), Light Gradient Boosting Machine (LGBM), Random Forest (RF) e Support Vector Machine (SVM). A partir dos resultados, relatamos que o modelo LGBM obteve melhor acurácia na discriminação espectral por região, com valor de 0,93, seguido pelo modelo RF. Relativamente à discriminação entre castas, estes dois modelos também obtiveram melhores resultados, com acurácias de 0,88 e 0,89. Os comprimentos de onda mais importantes para as discriminações procuradas estiveram na região do ultravioleta, seguidos do azul e do verde. Este trabalho aponta para a importância de detectar os comprimentos de onda mais relevantes para a caracterização dos espectros de reflectância das folhas de variedades de vinhas, e revela a capacidade efetiva de discriminar vinhedos por suas regiões ou variedades, usando modelos de aprendizado de máquina. Palavras-chave: Vinhedos, hiperespectral, aprendizagem de máquina.DINIZ CARVALHO DE ARRUDA, UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL; JORGE RICARDO DUCATI, UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL; ROSEMARY HOFF, CNPUV; TÁSSIA FRAGA BELLOLI, UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL; ADRIANE BRILL THUM, UNIVERSIDADE DO VALE DO RIO DOS SINOS.ARRUDA, D. C. deDUCATI, J. R.HOFF, R.BELLOLI, T. F.THUM, A. B.2023-06-19T17:24:04Z2023-06-19T17:24:04Z2023-06-192023info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleCiência Rural, v. 53, n. 12, e20220313, 2023.http://www.alice.cnptia.embrapa.br/alice/handle/doc/1154498http://doi.org/10.1590/0103-8478cr20220313enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2023-06-19T17:24:04Zoai:www.alice.cnptia.embrapa.br:doc/1154498Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542023-06-19T17:24:04Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Proximal hyperspectral analysis in grape leaves for region and variety identification.
title Proximal hyperspectral analysis in grape leaves for region and variety identification.
spellingShingle Proximal hyperspectral analysis in grape leaves for region and variety identification.
ARRUDA, D. C. de
Spectroradiometer
Hyperspectral
Machine learning
Vinhedos
Hiperespectral
Aprendizagem de máquina
Vineyards
Hyperspectral imagery
title_short Proximal hyperspectral analysis in grape leaves for region and variety identification.
title_full Proximal hyperspectral analysis in grape leaves for region and variety identification.
title_fullStr Proximal hyperspectral analysis in grape leaves for region and variety identification.
title_full_unstemmed Proximal hyperspectral analysis in grape leaves for region and variety identification.
title_sort Proximal hyperspectral analysis in grape leaves for region and variety identification.
author ARRUDA, D. C. de
author_facet ARRUDA, D. C. de
DUCATI, J. R.
HOFF, R.
BELLOLI, T. F.
THUM, A. B.
author_role author
author2 DUCATI, J. R.
HOFF, R.
BELLOLI, T. F.
THUM, A. B.
author2_role author
author
author
author
dc.contributor.none.fl_str_mv DINIZ CARVALHO DE ARRUDA, UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL; JORGE RICARDO DUCATI, UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL; ROSEMARY HOFF, CNPUV; TÁSSIA FRAGA BELLOLI, UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL; ADRIANE BRILL THUM, UNIVERSIDADE DO VALE DO RIO DOS SINOS.
dc.contributor.author.fl_str_mv ARRUDA, D. C. de
DUCATI, J. R.
HOFF, R.
BELLOLI, T. F.
THUM, A. B.
dc.subject.por.fl_str_mv Spectroradiometer
Hyperspectral
Machine learning
Vinhedos
Hiperespectral
Aprendizagem de máquina
Vineyards
Hyperspectral imagery
topic Spectroradiometer
Hyperspectral
Machine learning
Vinhedos
Hiperespectral
Aprendizagem de máquina
Vineyards
Hyperspectral imagery
description Reflectance measurements of plants of the same species can produce sets of data with differences between spectra, due to factors that can be external to the plant, like the environment where the plant grows, and to internal factors, for measurements of different varieties. This paper reports results of the analysis of radiometric measurements performed on leaves of vines of several grape varieties and on several sites. The objective of the research was, after the application of techniques of dimensionality reduction for the definition of the most relevant wavelengths, to evaluate four machine learning models applied to the observational sample aiming to discriminate classes of region and variety in vineyards. The tested machine learning classification models were Canonical Discrimination Analysis (CDA), Light Gradient Boosting Machine (LGBM), Random Forest (RF), and Support Vector Machine (SVM). From the results, we reported that the LGBM model obtained better accuracy in spectral discrimination by region, with a value the 0.93, followed by the RF model. Regarding the discrimination between grape varieties, these two models also achieved better results, with accuracies of 0.88 and 0.89. The wavelengths more relevant for discrimination were at ultraviolet, followed by those at blue and green spectral regions. This research pointed toward the importance of defining the wavelengths more relevant to the characterization of the reflectance spectra of leaves of grape varieties and revealed the effective capability of discriminating vineyards by their region or grape variety, using machine learning models. Análise hiperespectral proximal em folhas de videiras para identificação de regiões e variedades RESUMO: Medições de refletância de plantas da mesma espécie podem produzir conjuntos de dados com diferenças entre os espectros, devido a fatores que podem ser externos à planta, como o ambiente onde a planta cresce, e fatores internos, para medições com variedades de plantas. Este artigo reporta resultados da análise de medições por espectrorradiometria efetuadas em folhas de vinhas de variedades e em diferentes localidades. O objetivo desta pesquisa foi, após a aplicação de técnicas de redução de dimensionalidade para a definição dos comprimentos de onda mais relevantes, avaliar quatro modelos de aprendizado de máquina aplicados à amostra observacional visando discriminar classes de região e variedade. Os modelos de classificação de aprendizado de máquina testados foram Canonical Discrimination Analysis (CDA), Light Gradient Boosting Machine (LGBM), Random Forest (RF) e Support Vector Machine (SVM). A partir dos resultados, relatamos que o modelo LGBM obteve melhor acurácia na discriminação espectral por região, com valor de 0,93, seguido pelo modelo RF. Relativamente à discriminação entre castas, estes dois modelos também obtiveram melhores resultados, com acurácias de 0,88 e 0,89. Os comprimentos de onda mais importantes para as discriminações procuradas estiveram na região do ultravioleta, seguidos do azul e do verde. Este trabalho aponta para a importância de detectar os comprimentos de onda mais relevantes para a caracterização dos espectros de reflectância das folhas de variedades de vinhas, e revela a capacidade efetiva de discriminar vinhedos por suas regiões ou variedades, usando modelos de aprendizado de máquina. Palavras-chave: Vinhedos, hiperespectral, aprendizagem de máquina.
publishDate 2023
dc.date.none.fl_str_mv 2023-06-19T17:24:04Z
2023-06-19T17:24:04Z
2023-06-19
2023
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv Ciência Rural, v. 53, n. 12, e20220313, 2023.
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1154498
http://doi.org/10.1590/0103-8478cr20220313
identifier_str_mv Ciência Rural, v. 53, n. 12, e20220313, 2023.
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/1154498
http://doi.org/10.1590/0103-8478cr20220313
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1817695675364671488