Models for optimizing selection based on adaptability and stability of cotton genotypes.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
Texto Completo: | http://www.alice.cnptia.embrapa.br/alice/handle/doc/1139988 |
Resumo: | In multi-environment trials (MET), large networks are assessed for results improvement. However, genotype by environment interaction plays an important role in the selection of the most adaptable and stable genotypes in MET framework. In this study, we tested different residual variances and measure the selection gain of cotton genotypes accounting for adaptability and stability, simultaneously. Twelve genotypes of cotton were bred in 10 environments, and fiber length (FL), fiber strength (FS), micronaire (MIC), and fiber yield (FY) were determined. Model selection for different residual variance structures (homogeneous and heterogeneous) was tested using the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC). The variance components were estimated through restricted maximum likelihood and genotypic values were predicted through best linear unbiased prediction. The harmonic mean of relative performance of genetic values (HMRPGV) were applied for simultaneous selection for adaptability, stability, and yield. According to BIC heterogeneous residual variance was the best model fit for FY, whereas homogeneous residual variance was the best model fit for FL, FS, and MIC traits. The selective accuracy was high, indicating reliability of the prediction. The HMRPGV was capable to select for stability, adaptability and yield simultaneously, with remarkable selection gain for each trait. |
id |
EMBR_9901aa5831c8832451e27ced2d9af536 |
---|---|
oai_identifier_str |
oai:www.alice.cnptia.embrapa.br:doc/1139988 |
network_acronym_str |
EMBR |
network_name_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository_id_str |
2154 |
spelling |
Models for optimizing selection based on adaptability and stability of cotton genotypes.EstabilidadeEnsaios multi ambientesMulti environment trialsBayesian Information CriterionHMRPGVMédia Harmônica do Desempenho Relativo dos Valores GenéticosBICAlgodãoFibra VegetalGossypium HirsutumProdutividadeCottonIn multi-environment trials (MET), large networks are assessed for results improvement. However, genotype by environment interaction plays an important role in the selection of the most adaptable and stable genotypes in MET framework. In this study, we tested different residual variances and measure the selection gain of cotton genotypes accounting for adaptability and stability, simultaneously. Twelve genotypes of cotton were bred in 10 environments, and fiber length (FL), fiber strength (FS), micronaire (MIC), and fiber yield (FY) were determined. Model selection for different residual variance structures (homogeneous and heterogeneous) was tested using the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC). The variance components were estimated through restricted maximum likelihood and genotypic values were predicted through best linear unbiased prediction. The harmonic mean of relative performance of genetic values (HMRPGV) were applied for simultaneous selection for adaptability, stability, and yield. According to BIC heterogeneous residual variance was the best model fit for FY, whereas homogeneous residual variance was the best model fit for FL, FS, and MIC traits. The selective accuracy was high, indicating reliability of the prediction. The HMRPGV was capable to select for stability, adaptability and yield simultaneously, with remarkable selection gain for each trait.MARCO ANTÔNIO PEIXITO, UNIVERSIDADE FEDERAL DE VIÇOSA; JENIFFER SANTANA PINTO COELHO EVANGELISTA, UNIVERSIDADE FEDERAL DE VIÇOSA; RODRIGO SILVA ALVES, UNIVERSIDADE FEDERAL DE VIÇOSA; FRANCISCO JOSÉ CORREA FARIAS, CNPA; LUIZ PAULO DE CARVALHO, CNPA; LARISSA PEREIRA RIBEIRO TEODORO, UNIVERSIDADE FEDERAL DE MATO GROSSO; PAULO EDUARDO TEODORO, UNIVERSIDADE FEDERAL DE MATO GROSSO; LEONARDO LOPES BHERING, UNIVERSIDADE FEDERAL DE VIÇOSA.PEIXOTO, M. A.EVANGELISTA, J. S. P. C.ALVES, R. S.FARIAS, F. J. C.CARVALHO, L. P.TEODORO, L. P. R.TEODORO, P. E.BHERING, L. L.2022-02-13T01:57:44Z2022-02-13T01:57:44Z2022-02-122021info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article8 p.Ciência Rural, v. 51, n. 5, e20200530, p. 1-8, 2021.1678-4596http://www.alice.cnptia.embrapa.br/alice/handle/doc/113998810.1590/0103-8478cr20200530enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2022-02-13T01:57:53Zoai:www.alice.cnptia.embrapa.br:doc/1139988Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542022-02-13T01:57:53Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
Models for optimizing selection based on adaptability and stability of cotton genotypes. |
title |
Models for optimizing selection based on adaptability and stability of cotton genotypes. |
spellingShingle |
Models for optimizing selection based on adaptability and stability of cotton genotypes. PEIXOTO, M. A. Estabilidade Ensaios multi ambientes Multi environment trials Bayesian Information Criterion HMRPGV Média Harmônica do Desempenho Relativo dos Valores Genéticos BIC Algodão Fibra Vegetal Gossypium Hirsutum Produtividade Cotton |
title_short |
Models for optimizing selection based on adaptability and stability of cotton genotypes. |
title_full |
Models for optimizing selection based on adaptability and stability of cotton genotypes. |
title_fullStr |
Models for optimizing selection based on adaptability and stability of cotton genotypes. |
title_full_unstemmed |
Models for optimizing selection based on adaptability and stability of cotton genotypes. |
title_sort |
Models for optimizing selection based on adaptability and stability of cotton genotypes. |
author |
PEIXOTO, M. A. |
author_facet |
PEIXOTO, M. A. EVANGELISTA, J. S. P. C. ALVES, R. S. FARIAS, F. J. C. CARVALHO, L. P. TEODORO, L. P. R. TEODORO, P. E. BHERING, L. L. |
author_role |
author |
author2 |
EVANGELISTA, J. S. P. C. ALVES, R. S. FARIAS, F. J. C. CARVALHO, L. P. TEODORO, L. P. R. TEODORO, P. E. BHERING, L. L. |
author2_role |
author author author author author author author |
dc.contributor.none.fl_str_mv |
MARCO ANTÔNIO PEIXITO, UNIVERSIDADE FEDERAL DE VIÇOSA; JENIFFER SANTANA PINTO COELHO EVANGELISTA, UNIVERSIDADE FEDERAL DE VIÇOSA; RODRIGO SILVA ALVES, UNIVERSIDADE FEDERAL DE VIÇOSA; FRANCISCO JOSÉ CORREA FARIAS, CNPA; LUIZ PAULO DE CARVALHO, CNPA; LARISSA PEREIRA RIBEIRO TEODORO, UNIVERSIDADE FEDERAL DE MATO GROSSO; PAULO EDUARDO TEODORO, UNIVERSIDADE FEDERAL DE MATO GROSSO; LEONARDO LOPES BHERING, UNIVERSIDADE FEDERAL DE VIÇOSA. |
dc.contributor.author.fl_str_mv |
PEIXOTO, M. A. EVANGELISTA, J. S. P. C. ALVES, R. S. FARIAS, F. J. C. CARVALHO, L. P. TEODORO, L. P. R. TEODORO, P. E. BHERING, L. L. |
dc.subject.por.fl_str_mv |
Estabilidade Ensaios multi ambientes Multi environment trials Bayesian Information Criterion HMRPGV Média Harmônica do Desempenho Relativo dos Valores Genéticos BIC Algodão Fibra Vegetal Gossypium Hirsutum Produtividade Cotton |
topic |
Estabilidade Ensaios multi ambientes Multi environment trials Bayesian Information Criterion HMRPGV Média Harmônica do Desempenho Relativo dos Valores Genéticos BIC Algodão Fibra Vegetal Gossypium Hirsutum Produtividade Cotton |
description |
In multi-environment trials (MET), large networks are assessed for results improvement. However, genotype by environment interaction plays an important role in the selection of the most adaptable and stable genotypes in MET framework. In this study, we tested different residual variances and measure the selection gain of cotton genotypes accounting for adaptability and stability, simultaneously. Twelve genotypes of cotton were bred in 10 environments, and fiber length (FL), fiber strength (FS), micronaire (MIC), and fiber yield (FY) were determined. Model selection for different residual variance structures (homogeneous and heterogeneous) was tested using the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC). The variance components were estimated through restricted maximum likelihood and genotypic values were predicted through best linear unbiased prediction. The harmonic mean of relative performance of genetic values (HMRPGV) were applied for simultaneous selection for adaptability, stability, and yield. According to BIC heterogeneous residual variance was the best model fit for FY, whereas homogeneous residual variance was the best model fit for FL, FS, and MIC traits. The selective accuracy was high, indicating reliability of the prediction. The HMRPGV was capable to select for stability, adaptability and yield simultaneously, with remarkable selection gain for each trait. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021 2022-02-13T01:57:44Z 2022-02-13T01:57:44Z 2022-02-12 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Ciência Rural, v. 51, n. 5, e20200530, p. 1-8, 2021. 1678-4596 http://www.alice.cnptia.embrapa.br/alice/handle/doc/1139988 10.1590/0103-8478cr20200530 |
identifier_str_mv |
Ciência Rural, v. 51, n. 5, e20200530, p. 1-8, 2021. 1678-4596 10.1590/0103-8478cr20200530 |
url |
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1139988 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
8 p. |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
collection |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository.name.fl_str_mv |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
cg-riaa@embrapa.br |
_version_ |
1822721544833466368 |