Using brainwave patterns recorded from plant pathology experts to increase the reliability of ai-based plant disease recognition system.

Detalhes bibliográficos
Autor(a) principal: MEIR, Y.
Data de Publicação: 2023
Outros Autores: BARBEDO, J. G. A., KEREN, O., GODOY, C. V., AMEDI, N., SHALOM, Y., GEVA, A. B.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1153402
Resumo: This study investigates how the use of electroencephalograms from plant pathology experts can improve the accuracy and robustness of image-based artificial intelligence models dedicated to plant disease recognition.
id EMBR_a818d6947f5a9472f49aaf331c1755da
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/1153402
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling Using brainwave patterns recorded from plant pathology experts to increase the reliability of ai-based plant disease recognition system.Patologia de plantaOndas cerebraisEletroencefalogramaImagem digitalAprendizado ativoInteligência artificialElectroencephalogramLabelingActive learningSojaSoybeansDigital imagesPlant pathologyPlant diseases and disordersArtificial intelligenceThis study investigates how the use of electroencephalograms from plant pathology experts can improve the accuracy and robustness of image-based artificial intelligence models dedicated to plant disease recognition.YONATAN MEIR, INNEREYE LTD.; JAYME GARCIA ARNAL BARBEDO, CNPTIA; OMRI KEREN, INNEREYE LTD.; CLAUDIA VIEIRA GODOY, CNPSO; NOFAR AMEDI, INNEREYE LTD.; YAAR SHALOM, INNEREYE LTD.; AMIR B. GEVA, INNEREYE LTD., BEN GURION UNIVERSITY.MEIR, Y.BARBEDO, J. G. A.KEREN, O.GODOY, C. V.AMEDI, N.SHALOM, Y.GEVA, A. B.2023-06-26T16:36:19Z2023-06-26T16:36:19Z2023-04-272023info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article13 p.Sensors, v. 23, n. 9, 4272, 2023.http://www.alice.cnptia.embrapa.br/alice/handle/doc/115340210.3390/s23094272enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2023-06-26T16:36:20Zoai:www.alice.cnptia.embrapa.br:doc/1153402Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542023-06-26T16:36:20Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Using brainwave patterns recorded from plant pathology experts to increase the reliability of ai-based plant disease recognition system.
title Using brainwave patterns recorded from plant pathology experts to increase the reliability of ai-based plant disease recognition system.
spellingShingle Using brainwave patterns recorded from plant pathology experts to increase the reliability of ai-based plant disease recognition system.
MEIR, Y.
Patologia de planta
Ondas cerebrais
Eletroencefalograma
Imagem digital
Aprendizado ativo
Inteligência artificial
Electroencephalogram
Labeling
Active learning
Soja
Soybeans
Digital images
Plant pathology
Plant diseases and disorders
Artificial intelligence
title_short Using brainwave patterns recorded from plant pathology experts to increase the reliability of ai-based plant disease recognition system.
title_full Using brainwave patterns recorded from plant pathology experts to increase the reliability of ai-based plant disease recognition system.
title_fullStr Using brainwave patterns recorded from plant pathology experts to increase the reliability of ai-based plant disease recognition system.
title_full_unstemmed Using brainwave patterns recorded from plant pathology experts to increase the reliability of ai-based plant disease recognition system.
title_sort Using brainwave patterns recorded from plant pathology experts to increase the reliability of ai-based plant disease recognition system.
author MEIR, Y.
author_facet MEIR, Y.
BARBEDO, J. G. A.
KEREN, O.
GODOY, C. V.
AMEDI, N.
SHALOM, Y.
GEVA, A. B.
author_role author
author2 BARBEDO, J. G. A.
KEREN, O.
GODOY, C. V.
AMEDI, N.
SHALOM, Y.
GEVA, A. B.
author2_role author
author
author
author
author
author
dc.contributor.none.fl_str_mv YONATAN MEIR, INNEREYE LTD.; JAYME GARCIA ARNAL BARBEDO, CNPTIA; OMRI KEREN, INNEREYE LTD.; CLAUDIA VIEIRA GODOY, CNPSO; NOFAR AMEDI, INNEREYE LTD.; YAAR SHALOM, INNEREYE LTD.; AMIR B. GEVA, INNEREYE LTD., BEN GURION UNIVERSITY.
dc.contributor.author.fl_str_mv MEIR, Y.
BARBEDO, J. G. A.
KEREN, O.
GODOY, C. V.
AMEDI, N.
SHALOM, Y.
GEVA, A. B.
dc.subject.por.fl_str_mv Patologia de planta
Ondas cerebrais
Eletroencefalograma
Imagem digital
Aprendizado ativo
Inteligência artificial
Electroencephalogram
Labeling
Active learning
Soja
Soybeans
Digital images
Plant pathology
Plant diseases and disorders
Artificial intelligence
topic Patologia de planta
Ondas cerebrais
Eletroencefalograma
Imagem digital
Aprendizado ativo
Inteligência artificial
Electroencephalogram
Labeling
Active learning
Soja
Soybeans
Digital images
Plant pathology
Plant diseases and disorders
Artificial intelligence
description This study investigates how the use of electroencephalograms from plant pathology experts can improve the accuracy and robustness of image-based artificial intelligence models dedicated to plant disease recognition.
publishDate 2023
dc.date.none.fl_str_mv 2023-06-26T16:36:19Z
2023-06-26T16:36:19Z
2023-04-27
2023
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv Sensors, v. 23, n. 9, 4272, 2023.
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1153402
10.3390/s23094272
identifier_str_mv Sensors, v. 23, n. 9, 4272, 2023.
10.3390/s23094272
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/1153402
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 13 p.
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1817695676615622656