Using brainwave patterns recorded from plant pathology experts to increase the reliability of ai-based plant disease recognition system.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
Texto Completo: | http://www.alice.cnptia.embrapa.br/alice/handle/doc/1153402 |
Resumo: | This study investigates how the use of electroencephalograms from plant pathology experts can improve the accuracy and robustness of image-based artificial intelligence models dedicated to plant disease recognition. |
id |
EMBR_a818d6947f5a9472f49aaf331c1755da |
---|---|
oai_identifier_str |
oai:www.alice.cnptia.embrapa.br:doc/1153402 |
network_acronym_str |
EMBR |
network_name_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository_id_str |
2154 |
spelling |
Using brainwave patterns recorded from plant pathology experts to increase the reliability of ai-based plant disease recognition system.Patologia de plantaOndas cerebraisEletroencefalogramaImagem digitalAprendizado ativoInteligência artificialElectroencephalogramLabelingActive learningSojaSoybeansDigital imagesPlant pathologyPlant diseases and disordersArtificial intelligenceThis study investigates how the use of electroencephalograms from plant pathology experts can improve the accuracy and robustness of image-based artificial intelligence models dedicated to plant disease recognition.YONATAN MEIR, INNEREYE LTD.; JAYME GARCIA ARNAL BARBEDO, CNPTIA; OMRI KEREN, INNEREYE LTD.; CLAUDIA VIEIRA GODOY, CNPSO; NOFAR AMEDI, INNEREYE LTD.; YAAR SHALOM, INNEREYE LTD.; AMIR B. GEVA, INNEREYE LTD., BEN GURION UNIVERSITY.MEIR, Y.BARBEDO, J. G. A.KEREN, O.GODOY, C. V.AMEDI, N.SHALOM, Y.GEVA, A. B.2023-06-26T16:36:19Z2023-06-26T16:36:19Z2023-04-272023info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article13 p.Sensors, v. 23, n. 9, 4272, 2023.http://www.alice.cnptia.embrapa.br/alice/handle/doc/115340210.3390/s23094272enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2023-06-26T16:36:20Zoai:www.alice.cnptia.embrapa.br:doc/1153402Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542023-06-26T16:36:20Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
Using brainwave patterns recorded from plant pathology experts to increase the reliability of ai-based plant disease recognition system. |
title |
Using brainwave patterns recorded from plant pathology experts to increase the reliability of ai-based plant disease recognition system. |
spellingShingle |
Using brainwave patterns recorded from plant pathology experts to increase the reliability of ai-based plant disease recognition system. MEIR, Y. Patologia de planta Ondas cerebrais Eletroencefalograma Imagem digital Aprendizado ativo Inteligência artificial Electroencephalogram Labeling Active learning Soja Soybeans Digital images Plant pathology Plant diseases and disorders Artificial intelligence |
title_short |
Using brainwave patterns recorded from plant pathology experts to increase the reliability of ai-based plant disease recognition system. |
title_full |
Using brainwave patterns recorded from plant pathology experts to increase the reliability of ai-based plant disease recognition system. |
title_fullStr |
Using brainwave patterns recorded from plant pathology experts to increase the reliability of ai-based plant disease recognition system. |
title_full_unstemmed |
Using brainwave patterns recorded from plant pathology experts to increase the reliability of ai-based plant disease recognition system. |
title_sort |
Using brainwave patterns recorded from plant pathology experts to increase the reliability of ai-based plant disease recognition system. |
author |
MEIR, Y. |
author_facet |
MEIR, Y. BARBEDO, J. G. A. KEREN, O. GODOY, C. V. AMEDI, N. SHALOM, Y. GEVA, A. B. |
author_role |
author |
author2 |
BARBEDO, J. G. A. KEREN, O. GODOY, C. V. AMEDI, N. SHALOM, Y. GEVA, A. B. |
author2_role |
author author author author author author |
dc.contributor.none.fl_str_mv |
YONATAN MEIR, INNEREYE LTD.; JAYME GARCIA ARNAL BARBEDO, CNPTIA; OMRI KEREN, INNEREYE LTD.; CLAUDIA VIEIRA GODOY, CNPSO; NOFAR AMEDI, INNEREYE LTD.; YAAR SHALOM, INNEREYE LTD.; AMIR B. GEVA, INNEREYE LTD., BEN GURION UNIVERSITY. |
dc.contributor.author.fl_str_mv |
MEIR, Y. BARBEDO, J. G. A. KEREN, O. GODOY, C. V. AMEDI, N. SHALOM, Y. GEVA, A. B. |
dc.subject.por.fl_str_mv |
Patologia de planta Ondas cerebrais Eletroencefalograma Imagem digital Aprendizado ativo Inteligência artificial Electroencephalogram Labeling Active learning Soja Soybeans Digital images Plant pathology Plant diseases and disorders Artificial intelligence |
topic |
Patologia de planta Ondas cerebrais Eletroencefalograma Imagem digital Aprendizado ativo Inteligência artificial Electroencephalogram Labeling Active learning Soja Soybeans Digital images Plant pathology Plant diseases and disorders Artificial intelligence |
description |
This study investigates how the use of electroencephalograms from plant pathology experts can improve the accuracy and robustness of image-based artificial intelligence models dedicated to plant disease recognition. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-06-26T16:36:19Z 2023-06-26T16:36:19Z 2023-04-27 2023 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Sensors, v. 23, n. 9, 4272, 2023. http://www.alice.cnptia.embrapa.br/alice/handle/doc/1153402 10.3390/s23094272 |
identifier_str_mv |
Sensors, v. 23, n. 9, 4272, 2023. 10.3390/s23094272 |
url |
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1153402 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
13 p. |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
collection |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository.name.fl_str_mv |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
cg-riaa@embrapa.br |
_version_ |
1817695676615622656 |