Spatio-temporal distribution of Anthonomus grandis grandis Boh. in tropical cotton fields.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
Texto Completo: | http://www.alice.cnptia.embrapa.br/alice/handle/doc/1146623 |
Resumo: | The boll weevil, Anthonomus grandis grandis Boheman (Coleoptera: Curculionidae), is considered to be the most harmful cotton, Gossypium hirsutum L., pest throughout subtropical, and tropical regions of the western hemisphere.1,2 Boll weevil damages cotton by feeding upon and laying eggs inside its reproductive structures, where hatched larvae feed and pupate,3,4 causing abscission or reduction of fiber quality,3,5,6 and economic losses of up to US$74 million per year.7 Boll weevil chemical control interventions are based on economic thresholds obtained by sampling the plants and for adult boll weevils captured in pheromone-baited traps.3,8,9 In order to develop an accurate monitoring and management program, estimates of population density are essential.10,11 Biotic and abiotic factors affect dynamics and within-field distribution (aggregated, random or uniform patterns) of insect populations.10,12 Knowing a pest's distribution within a field can help to: (1) develop site-specific sampling and control efforts; (2) predict pest movement; (3) improve insecticide-resistance management; (4) conserve biological control agents by precision targeting sprays for the infested areas; and (5) reduce the economic, social and environmental costs associated with pest control.10,11,13 The spatial distribution of boll weevils has been investigated using mean?variance relationships4,14 without considering within-field spatial density distribution, or has been based on pheromone-baited trap captures.15 The most accurate approach is the use of geostatistics because the position of the samples in space is accounted for.16 Recent work reported that geostatistics is of particular interest for pest management because it allows inferences about the minimum inter-sample distance needed to obtain independent estimations and indicates patterns of distribution and colonization of an organism, all of which are crucial for the development of effective sampling programs.11,13 The purpose of this study was to investigate the spatial dynamics of A. grandis grandis on cotton by determining within-field distribution of adults and infested reproductive structures (having feeding and/or oviposition punctures). |
id |
EMBR_aa2d6a0a39e5bee23277f3a405d925af |
---|---|
oai_identifier_str |
oai:www.alice.cnptia.embrapa.br:doc/1146623 |
network_acronym_str |
EMBR |
network_name_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository_id_str |
2154 |
spelling |
Spatio-temporal distribution of Anthonomus grandis grandis Boh. in tropical cotton fields.HortaliçasBrócolisTomatoSweet potatoSunflowerAlgodãoGossypium HirsutumEntomologiaEstatística AgrícolaPestePraga de PlantaAnthonomus GrandisBicudoClima TropicalRepolhoCenouraMandiocaCouveAlhoTomateGirassolBatata DoceEntomologyCottonGeostatisticsPlant pestsAnthonomus grandis grandisTropical agricultureCabbageCarrotsCassavaGarlicSunflower seed proteinSunflower seed productsVegetablesBroccoliThe boll weevil, Anthonomus grandis grandis Boheman (Coleoptera: Curculionidae), is considered to be the most harmful cotton, Gossypium hirsutum L., pest throughout subtropical, and tropical regions of the western hemisphere.1,2 Boll weevil damages cotton by feeding upon and laying eggs inside its reproductive structures, where hatched larvae feed and pupate,3,4 causing abscission or reduction of fiber quality,3,5,6 and economic losses of up to US$74 million per year.7 Boll weevil chemical control interventions are based on economic thresholds obtained by sampling the plants and for adult boll weevils captured in pheromone-baited traps.3,8,9 In order to develop an accurate monitoring and management program, estimates of population density are essential.10,11 Biotic and abiotic factors affect dynamics and within-field distribution (aggregated, random or uniform patterns) of insect populations.10,12 Knowing a pest's distribution within a field can help to: (1) develop site-specific sampling and control efforts; (2) predict pest movement; (3) improve insecticide-resistance management; (4) conserve biological control agents by precision targeting sprays for the infested areas; and (5) reduce the economic, social and environmental costs associated with pest control.10,11,13 The spatial distribution of boll weevils has been investigated using mean?variance relationships4,14 without considering within-field spatial density distribution, or has been based on pheromone-baited trap captures.15 The most accurate approach is the use of geostatistics because the position of the samples in space is accounted for.16 Recent work reported that geostatistics is of particular interest for pest management because it allows inferences about the minimum inter-sample distance needed to obtain independent estimations and indicates patterns of distribution and colonization of an organism, all of which are crucial for the development of effective sampling programs.11,13 The purpose of this study was to investigate the spatial dynamics of A. grandis grandis on cotton by determining within-field distribution of adults and infested reproductive structures (having feeding and/or oviposition punctures).ANDRÉA A. S. OLIVEIRA, UnB; TAMÍRIS A. ARAÚJO, UFSCar; ALLAN T. SHOWLER, USDA; ANA C. A. ARAÚJO, UnB; IGOR S. ALMEIDA, UnB; RENATA S. A. AGUIAR, UnB; JOSÉ EDNILSON MIRANDA, CNPA; FLÁVIO L. FERNANDES, UFV; CRISTINA S. BASTOS, UnB.OLIVEIRA, A. A. S.ARAÚJO, T. A.SHOWLER, A. T.ARAÚJO, A. C. A.ALMEIDA, I. S.AGUIAR, R. S. A.MIRANDA, J. E.FERNANDES, F. L.BASTOS, C. S.2022-09-20T13:05:20Z2022-09-20T13:05:20Z2022-09-202022info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlePest Management Science, v. 78, n. 3, p. 2492-2501, 2022.1526-498xhttp://www.alice.cnptia.embrapa.br/alice/handle/doc/114662310.1002/ps.6880enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2022-09-20T13:05:29Zoai:www.alice.cnptia.embrapa.br:doc/1146623Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542022-09-20T13:05:29falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542022-09-20T13:05:29Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
Spatio-temporal distribution of Anthonomus grandis grandis Boh. in tropical cotton fields. |
title |
Spatio-temporal distribution of Anthonomus grandis grandis Boh. in tropical cotton fields. |
spellingShingle |
Spatio-temporal distribution of Anthonomus grandis grandis Boh. in tropical cotton fields. OLIVEIRA, A. A. S. Hortaliças Brócolis Tomato Sweet potato Sunflower Algodão Gossypium Hirsutum Entomologia Estatística Agrícola Peste Praga de Planta Anthonomus Grandis Bicudo Clima Tropical Repolho Cenoura Mandioca Couve Alho Tomate Girassol Batata Doce Entomology Cotton Geostatistics Plant pests Anthonomus grandis grandis Tropical agriculture Cabbage Carrots Cassava Garlic Sunflower seed protein Sunflower seed products Vegetables Broccoli |
title_short |
Spatio-temporal distribution of Anthonomus grandis grandis Boh. in tropical cotton fields. |
title_full |
Spatio-temporal distribution of Anthonomus grandis grandis Boh. in tropical cotton fields. |
title_fullStr |
Spatio-temporal distribution of Anthonomus grandis grandis Boh. in tropical cotton fields. |
title_full_unstemmed |
Spatio-temporal distribution of Anthonomus grandis grandis Boh. in tropical cotton fields. |
title_sort |
Spatio-temporal distribution of Anthonomus grandis grandis Boh. in tropical cotton fields. |
author |
OLIVEIRA, A. A. S. |
author_facet |
OLIVEIRA, A. A. S. ARAÚJO, T. A. SHOWLER, A. T. ARAÚJO, A. C. A. ALMEIDA, I. S. AGUIAR, R. S. A. MIRANDA, J. E. FERNANDES, F. L. BASTOS, C. S. |
author_role |
author |
author2 |
ARAÚJO, T. A. SHOWLER, A. T. ARAÚJO, A. C. A. ALMEIDA, I. S. AGUIAR, R. S. A. MIRANDA, J. E. FERNANDES, F. L. BASTOS, C. S. |
author2_role |
author author author author author author author author |
dc.contributor.none.fl_str_mv |
ANDRÉA A. S. OLIVEIRA, UnB; TAMÍRIS A. ARAÚJO, UFSCar; ALLAN T. SHOWLER, USDA; ANA C. A. ARAÚJO, UnB; IGOR S. ALMEIDA, UnB; RENATA S. A. AGUIAR, UnB; JOSÉ EDNILSON MIRANDA, CNPA; FLÁVIO L. FERNANDES, UFV; CRISTINA S. BASTOS, UnB. |
dc.contributor.author.fl_str_mv |
OLIVEIRA, A. A. S. ARAÚJO, T. A. SHOWLER, A. T. ARAÚJO, A. C. A. ALMEIDA, I. S. AGUIAR, R. S. A. MIRANDA, J. E. FERNANDES, F. L. BASTOS, C. S. |
dc.subject.por.fl_str_mv |
Hortaliças Brócolis Tomato Sweet potato Sunflower Algodão Gossypium Hirsutum Entomologia Estatística Agrícola Peste Praga de Planta Anthonomus Grandis Bicudo Clima Tropical Repolho Cenoura Mandioca Couve Alho Tomate Girassol Batata Doce Entomology Cotton Geostatistics Plant pests Anthonomus grandis grandis Tropical agriculture Cabbage Carrots Cassava Garlic Sunflower seed protein Sunflower seed products Vegetables Broccoli |
topic |
Hortaliças Brócolis Tomato Sweet potato Sunflower Algodão Gossypium Hirsutum Entomologia Estatística Agrícola Peste Praga de Planta Anthonomus Grandis Bicudo Clima Tropical Repolho Cenoura Mandioca Couve Alho Tomate Girassol Batata Doce Entomology Cotton Geostatistics Plant pests Anthonomus grandis grandis Tropical agriculture Cabbage Carrots Cassava Garlic Sunflower seed protein Sunflower seed products Vegetables Broccoli |
description |
The boll weevil, Anthonomus grandis grandis Boheman (Coleoptera: Curculionidae), is considered to be the most harmful cotton, Gossypium hirsutum L., pest throughout subtropical, and tropical regions of the western hemisphere.1,2 Boll weevil damages cotton by feeding upon and laying eggs inside its reproductive structures, where hatched larvae feed and pupate,3,4 causing abscission or reduction of fiber quality,3,5,6 and economic losses of up to US$74 million per year.7 Boll weevil chemical control interventions are based on economic thresholds obtained by sampling the plants and for adult boll weevils captured in pheromone-baited traps.3,8,9 In order to develop an accurate monitoring and management program, estimates of population density are essential.10,11 Biotic and abiotic factors affect dynamics and within-field distribution (aggregated, random or uniform patterns) of insect populations.10,12 Knowing a pest's distribution within a field can help to: (1) develop site-specific sampling and control efforts; (2) predict pest movement; (3) improve insecticide-resistance management; (4) conserve biological control agents by precision targeting sprays for the infested areas; and (5) reduce the economic, social and environmental costs associated with pest control.10,11,13 The spatial distribution of boll weevils has been investigated using mean?variance relationships4,14 without considering within-field spatial density distribution, or has been based on pheromone-baited trap captures.15 The most accurate approach is the use of geostatistics because the position of the samples in space is accounted for.16 Recent work reported that geostatistics is of particular interest for pest management because it allows inferences about the minimum inter-sample distance needed to obtain independent estimations and indicates patterns of distribution and colonization of an organism, all of which are crucial for the development of effective sampling programs.11,13 The purpose of this study was to investigate the spatial dynamics of A. grandis grandis on cotton by determining within-field distribution of adults and infested reproductive structures (having feeding and/or oviposition punctures). |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-09-20T13:05:20Z 2022-09-20T13:05:20Z 2022-09-20 2022 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Pest Management Science, v. 78, n. 3, p. 2492-2501, 2022. 1526-498x http://www.alice.cnptia.embrapa.br/alice/handle/doc/1146623 10.1002/ps.6880 |
identifier_str_mv |
Pest Management Science, v. 78, n. 3, p. 2492-2501, 2022. 1526-498x 10.1002/ps.6880 |
url |
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1146623 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
collection |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository.name.fl_str_mv |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
cg-riaa@embrapa.br |
_version_ |
1794503531222269952 |