Laser-induced breakdown spectroscopy associated with the design of experiments and machine learning for discrimination of Brachiaria brizantha seed vigor.

Detalhes bibliográficos
Autor(a) principal: CIOCCIA, G.
Data de Publicação: 2022
Outros Autores: MORAIS, C. P. de, BABOS, D. V., MILORI, D. M. B. P., ALVES, C. Z., CENA, C., NICOLODELLI, G., MARANGONI, B. S.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1148856
https://doi.org/10.3390/s22145067
Resumo: Laser-induced breakdown spectroscopy (LIBS) associated with machine learning algorithms (ML) was used to evaluate the Brachiaria seed physiological quality by discriminating the high and low vigor seeds. A 23 factorial design was used to optimize the LIBS experimental parameters for spectral analysis. A total of 120 samples from two distinct cultivars of Brachiaria brizantha seeds exhibiting high vigor (HV) and low vigor (LV) in standard tests were studied. The raw LIBS spectra were normalized and submitted to outlier verification, previously to the reduction data dimensionality from principal component analysis. Supervised machine learning algorithm parameters were chosen by leave-oneout cross-validation in the test samples, and it was tested by external validation using a new set of data. The overall accuracy in external validation achieved 100% for HV and LV discrimination,regardless of the cultivar or the classification algorithm.
id EMBR_b169f9e02f42405e3afd649c44dc67c4
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/1148856
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling Laser-induced breakdown spectroscopy associated with the design of experiments and machine learning for discrimination of Brachiaria brizantha seed vigor.LIBSMachine learningDesign of experimentsDiscriminatingLaser-induced breakdown spectroscopy (LIBS) associated with machine learning algorithms (ML) was used to evaluate the Brachiaria seed physiological quality by discriminating the high and low vigor seeds. A 23 factorial design was used to optimize the LIBS experimental parameters for spectral analysis. A total of 120 samples from two distinct cultivars of Brachiaria brizantha seeds exhibiting high vigor (HV) and low vigor (LV) in standard tests were studied. The raw LIBS spectra were normalized and submitted to outlier verification, previously to the reduction data dimensionality from principal component analysis. Supervised machine learning algorithm parameters were chosen by leave-oneout cross-validation in the test samples, and it was tested by external validation using a new set of data. The overall accuracy in external validation achieved 100% for HV and LV discrimination,regardless of the cultivar or the classification algorithm.DEBORA MARCONDES BASTOS PEREIRA, CNPDIA.CIOCCIA, G.MORAIS, C. P. deBABOS, D. V.MILORI, D. M. B. P.ALVES, C. Z.CENA, C.NICOLODELLI, G.MARANGONI, B. S.2024-01-23T10:42:17Z2024-01-23T10:42:17Z2022-11-282022info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article12 p.Sensors, v. 22, a5067, 2022.http://www.alice.cnptia.embrapa.br/alice/handle/doc/1148856https://doi.org/10.3390/s22145067enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2024-01-23T10:42:17Zoai:www.alice.cnptia.embrapa.br:doc/1148856Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542024-01-23T10:42:17Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Laser-induced breakdown spectroscopy associated with the design of experiments and machine learning for discrimination of Brachiaria brizantha seed vigor.
title Laser-induced breakdown spectroscopy associated with the design of experiments and machine learning for discrimination of Brachiaria brizantha seed vigor.
spellingShingle Laser-induced breakdown spectroscopy associated with the design of experiments and machine learning for discrimination of Brachiaria brizantha seed vigor.
CIOCCIA, G.
LIBS
Machine learning
Design of experiments
Discriminating
title_short Laser-induced breakdown spectroscopy associated with the design of experiments and machine learning for discrimination of Brachiaria brizantha seed vigor.
title_full Laser-induced breakdown spectroscopy associated with the design of experiments and machine learning for discrimination of Brachiaria brizantha seed vigor.
title_fullStr Laser-induced breakdown spectroscopy associated with the design of experiments and machine learning for discrimination of Brachiaria brizantha seed vigor.
title_full_unstemmed Laser-induced breakdown spectroscopy associated with the design of experiments and machine learning for discrimination of Brachiaria brizantha seed vigor.
title_sort Laser-induced breakdown spectroscopy associated with the design of experiments and machine learning for discrimination of Brachiaria brizantha seed vigor.
author CIOCCIA, G.
author_facet CIOCCIA, G.
MORAIS, C. P. de
BABOS, D. V.
MILORI, D. M. B. P.
ALVES, C. Z.
CENA, C.
NICOLODELLI, G.
MARANGONI, B. S.
author_role author
author2 MORAIS, C. P. de
BABOS, D. V.
MILORI, D. M. B. P.
ALVES, C. Z.
CENA, C.
NICOLODELLI, G.
MARANGONI, B. S.
author2_role author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv DEBORA MARCONDES BASTOS PEREIRA, CNPDIA.
dc.contributor.author.fl_str_mv CIOCCIA, G.
MORAIS, C. P. de
BABOS, D. V.
MILORI, D. M. B. P.
ALVES, C. Z.
CENA, C.
NICOLODELLI, G.
MARANGONI, B. S.
dc.subject.por.fl_str_mv LIBS
Machine learning
Design of experiments
Discriminating
topic LIBS
Machine learning
Design of experiments
Discriminating
description Laser-induced breakdown spectroscopy (LIBS) associated with machine learning algorithms (ML) was used to evaluate the Brachiaria seed physiological quality by discriminating the high and low vigor seeds. A 23 factorial design was used to optimize the LIBS experimental parameters for spectral analysis. A total of 120 samples from two distinct cultivars of Brachiaria brizantha seeds exhibiting high vigor (HV) and low vigor (LV) in standard tests were studied. The raw LIBS spectra were normalized and submitted to outlier verification, previously to the reduction data dimensionality from principal component analysis. Supervised machine learning algorithm parameters were chosen by leave-oneout cross-validation in the test samples, and it was tested by external validation using a new set of data. The overall accuracy in external validation achieved 100% for HV and LV discrimination,regardless of the cultivar or the classification algorithm.
publishDate 2022
dc.date.none.fl_str_mv 2022-11-28
2022
2024-01-23T10:42:17Z
2024-01-23T10:42:17Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv Sensors, v. 22, a5067, 2022.
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1148856
https://doi.org/10.3390/s22145067
identifier_str_mv Sensors, v. 22, a5067, 2022.
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/1148856
https://doi.org/10.3390/s22145067
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 12 p.
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1817695692857016320