Revisiting "privacy preserving clustering by data transformation".
Autor(a) principal: | |
---|---|
Data de Publicação: | 2010 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
Texto Completo: | http://www.alice.cnptia.embrapa.br/alice/handle/doc/863828 |
Resumo: | Preserving the privacy of individuals when data are shared for clustering is a complex problem. The challenge is how to protect the underlying data values subjected to clustering without jeopardizing the similarity between objects under analysis. In this short paper, we revisit a family of geometric data transformation methods (GDTMs) that distort numerical attributes by translations, scalings, rotations, or even by the combination of these geometric transformations. Such a method was designed to address privacy-preserving clustering, in scenarios where data owners must not only meet privacy requirements but also guarantee valid clustering results. We offer a detailed, comprehensive and up-to-date picture of methods for privacy-preserving clustering by data transformation. |
id |
EMBR_b31855977e9eaea249cf6e68c2a17c42 |
---|---|
oai_identifier_str |
oai:www.alice.cnptia.embrapa.br:doc/863828 |
network_acronym_str |
EMBR |
network_name_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository_id_str |
2154 |
spelling |
Revisiting "privacy preserving clustering by data transformation".ClusterizaçãoPrivacidade em mineração de dadosRecuperação da informaçãoClusteringInformation retrievalPreserving the privacy of individuals when data are shared for clustering is a complex problem. The challenge is how to protect the underlying data values subjected to clustering without jeopardizing the similarity between objects under analysis. In this short paper, we revisit a family of geometric data transformation methods (GDTMs) that distort numerical attributes by translations, scalings, rotations, or even by the combination of these geometric transformations. Such a method was designed to address privacy-preserving clustering, in scenarios where data owners must not only meet privacy requirements but also guarantee valid clustering results. We offer a detailed, comprehensive and up-to-date picture of methods for privacy-preserving clustering by data transformation.STANLEY ROBSON DE MEDEIROS OLIVEIRA, CNPTIA; OSMAR R. ZAÏANE, University of Alberta.OLIVEIRA, S. R. de M.ZAÏANE, O.2011-04-10T11:11:11Z2011-04-10T11:11:11Z2010-10-0720102013-04-05T11:11:11Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleJournal of Information and Data Management, Belo Horizonte, v. 1, n. 1, p. 53-56, Feb. 2010.http://www.alice.cnptia.embrapa.br/alice/handle/doc/863828enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2017-08-15T22:45:28Zoai:www.alice.cnptia.embrapa.br:doc/863828Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542017-08-15T22:45:28falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542017-08-15T22:45:28Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
Revisiting "privacy preserving clustering by data transformation". |
title |
Revisiting "privacy preserving clustering by data transformation". |
spellingShingle |
Revisiting "privacy preserving clustering by data transformation". OLIVEIRA, S. R. de M. Clusterização Privacidade em mineração de dados Recuperação da informação Clustering Information retrieval |
title_short |
Revisiting "privacy preserving clustering by data transformation". |
title_full |
Revisiting "privacy preserving clustering by data transformation". |
title_fullStr |
Revisiting "privacy preserving clustering by data transformation". |
title_full_unstemmed |
Revisiting "privacy preserving clustering by data transformation". |
title_sort |
Revisiting "privacy preserving clustering by data transformation". |
author |
OLIVEIRA, S. R. de M. |
author_facet |
OLIVEIRA, S. R. de M. ZAÏANE, O. |
author_role |
author |
author2 |
ZAÏANE, O. |
author2_role |
author |
dc.contributor.none.fl_str_mv |
STANLEY ROBSON DE MEDEIROS OLIVEIRA, CNPTIA; OSMAR R. ZAÏANE, University of Alberta. |
dc.contributor.author.fl_str_mv |
OLIVEIRA, S. R. de M. ZAÏANE, O. |
dc.subject.por.fl_str_mv |
Clusterização Privacidade em mineração de dados Recuperação da informação Clustering Information retrieval |
topic |
Clusterização Privacidade em mineração de dados Recuperação da informação Clustering Information retrieval |
description |
Preserving the privacy of individuals when data are shared for clustering is a complex problem. The challenge is how to protect the underlying data values subjected to clustering without jeopardizing the similarity between objects under analysis. In this short paper, we revisit a family of geometric data transformation methods (GDTMs) that distort numerical attributes by translations, scalings, rotations, or even by the combination of these geometric transformations. Such a method was designed to address privacy-preserving clustering, in scenarios where data owners must not only meet privacy requirements but also guarantee valid clustering results. We offer a detailed, comprehensive and up-to-date picture of methods for privacy-preserving clustering by data transformation. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-10-07 2010 2011-04-10T11:11:11Z 2011-04-10T11:11:11Z 2013-04-05T11:11:11Z |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Journal of Information and Data Management, Belo Horizonte, v. 1, n. 1, p. 53-56, Feb. 2010. http://www.alice.cnptia.embrapa.br/alice/handle/doc/863828 |
identifier_str_mv |
Journal of Information and Data Management, Belo Horizonte, v. 1, n. 1, p. 53-56, Feb. 2010. |
url |
http://www.alice.cnptia.embrapa.br/alice/handle/doc/863828 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
collection |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository.name.fl_str_mv |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
cg-riaa@embrapa.br |
_version_ |
1794503329254998016 |