Método para estimativa do percentual de cobertura de gordura em carcaça bovinas usando visão computacional.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , |
Idioma: | por |
Título da fonte: | Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
Texto Completo: | http://www.alice.cnptia.embrapa.br/alice/handle/doc/1138969 |
Resumo: | A carne bovina é uma das principais fontes de proteína animal para os seres humanos. No contexto de produção, a análise do acabamento da carcaça torna-se essencial visto sua importância no desempenho animal e exigências nutricionais. A avaliação individualizada das carcaças é inviável para a maioria dos frigoríficos, devido ao significativo número de animais, bem com o tempo e recursos dispendidos. Entretanto, o uso de tecnologia baseada em visão computacional e processamento de imagem, tem se mostrado bastante eficaz no processo de automação de rotina de inspeção. O objetivo deste estudo foi projetar, desenvolver e validar um sistema para estimar o percentual de gordura em semi-carcaças bovinas. Os dados foram coletados em um frigorífico localizado em Sinop e ocorreram entre outubro de 2020 e julho de 2021. A maioria das carcaças vieram de novilhas. Foi proposto um pipeline de visão computacional, o qual foi dividido em três etapas. Na primeira fase, foi realizado um processamento de vídeo para identificar e selecionar corretamente uma imagem contendo apenas a carcaça de interesse. Na segunda parte, foi realizado o pré-processamento e a segmentação para remoção do fundo da imagem e finalmente a estimação do percentual de gordura. Na etapa de segmentação do plano de fundo foi utilizada a rede neural denominada U-net. Para verificar a acurácia desta etapa optou-se pelo coeficiente de similaridade de Jaccard, ou Intersection over Union (IoU). A rede neural U-net treinada para segmentação de fundo da imagem atingiu um IoU médio de 0,96 ao segmentar 171 imagens de testes, demonstrando a boa performance na extração do fundo. O método proposto mostrou-se satisfatório para a realização da tarefa de estimação do percentual de gordura, mas os resultados se restringem a animais fêmeas, sendo necessários outras etapas de validação para ampliar o modelo de estimativa. |
id |
EMBR_b75a402e0b82643b338297f281543427 |
---|---|
oai_identifier_str |
oai:www.alice.cnptia.embrapa.br:doc/1138969 |
network_acronym_str |
EMBR |
network_name_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository_id_str |
2154 |
spelling |
Método para estimativa do percentual de cobertura de gordura em carcaça bovinas usando visão computacional.Processamento de dadosVisão computacionalRede neuralU-netSemicarcaçaNovilhaCoeficiente de similaridadeJaccardIntersection over UnionCarcaçaZootecniaGordura AnimalBovinoA carne bovina é uma das principais fontes de proteína animal para os seres humanos. No contexto de produção, a análise do acabamento da carcaça torna-se essencial visto sua importância no desempenho animal e exigências nutricionais. A avaliação individualizada das carcaças é inviável para a maioria dos frigoríficos, devido ao significativo número de animais, bem com o tempo e recursos dispendidos. Entretanto, o uso de tecnologia baseada em visão computacional e processamento de imagem, tem se mostrado bastante eficaz no processo de automação de rotina de inspeção. O objetivo deste estudo foi projetar, desenvolver e validar um sistema para estimar o percentual de gordura em semi-carcaças bovinas. Os dados foram coletados em um frigorífico localizado em Sinop e ocorreram entre outubro de 2020 e julho de 2021. A maioria das carcaças vieram de novilhas. Foi proposto um pipeline de visão computacional, o qual foi dividido em três etapas. Na primeira fase, foi realizado um processamento de vídeo para identificar e selecionar corretamente uma imagem contendo apenas a carcaça de interesse. Na segunda parte, foi realizado o pré-processamento e a segmentação para remoção do fundo da imagem e finalmente a estimação do percentual de gordura. Na etapa de segmentação do plano de fundo foi utilizada a rede neural denominada U-net. Para verificar a acurácia desta etapa optou-se pelo coeficiente de similaridade de Jaccard, ou Intersection over Union (IoU). A rede neural U-net treinada para segmentação de fundo da imagem atingiu um IoU médio de 0,96 ao segmentar 171 imagens de testes, demonstrando a boa performance na extração do fundo. O método proposto mostrou-se satisfatório para a realização da tarefa de estimação do percentual de gordura, mas os resultados se restringem a animais fêmeas, sendo necessários outras etapas de validação para ampliar o modelo de estimativa.ELTON FERNANDES DOS SANTOS, UFMT, Sinop-MT; LUCIANO BASTOS LOPES, CPAMT; LAURIMAR GONCALVES VENDRUSCULO, CNPTIA.SANTOS, E. F. dosLOPES, L. B.VENDRUSCULO, L. G.2022-01-11T01:56:02Z2022-01-11T01:56:02Z2022-01-102021Resumo em anais e proceedingsinfo:eu-repo/semantics/publishedVersionIn: ENCONTRO DE CIÊNCIA E TECNOLOGIAS AGROSSUSTENTÁVEIS, 5.; JORNADA CIENTÍFICA DA EMBRAPA AGROSSILVIPASTORIL, 10., 2021. Sinop. Resumos... Brasília, DF: Embrapa, 2021. p. 57.http://www.alice.cnptia.embrapa.br/alice/handle/doc/1138969porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2022-01-11T01:56:10Zoai:www.alice.cnptia.embrapa.br:doc/1138969Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542022-01-11T01:56:10Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
Método para estimativa do percentual de cobertura de gordura em carcaça bovinas usando visão computacional. |
title |
Método para estimativa do percentual de cobertura de gordura em carcaça bovinas usando visão computacional. |
spellingShingle |
Método para estimativa do percentual de cobertura de gordura em carcaça bovinas usando visão computacional. SANTOS, E. F. dos Processamento de dados Visão computacional Rede neural U-net Semicarcaça Novilha Coeficiente de similaridade Jaccard Intersection over Union Carcaça Zootecnia Gordura Animal Bovino |
title_short |
Método para estimativa do percentual de cobertura de gordura em carcaça bovinas usando visão computacional. |
title_full |
Método para estimativa do percentual de cobertura de gordura em carcaça bovinas usando visão computacional. |
title_fullStr |
Método para estimativa do percentual de cobertura de gordura em carcaça bovinas usando visão computacional. |
title_full_unstemmed |
Método para estimativa do percentual de cobertura de gordura em carcaça bovinas usando visão computacional. |
title_sort |
Método para estimativa do percentual de cobertura de gordura em carcaça bovinas usando visão computacional. |
author |
SANTOS, E. F. dos |
author_facet |
SANTOS, E. F. dos LOPES, L. B. VENDRUSCULO, L. G. |
author_role |
author |
author2 |
LOPES, L. B. VENDRUSCULO, L. G. |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
ELTON FERNANDES DOS SANTOS, UFMT, Sinop-MT; LUCIANO BASTOS LOPES, CPAMT; LAURIMAR GONCALVES VENDRUSCULO, CNPTIA. |
dc.contributor.author.fl_str_mv |
SANTOS, E. F. dos LOPES, L. B. VENDRUSCULO, L. G. |
dc.subject.por.fl_str_mv |
Processamento de dados Visão computacional Rede neural U-net Semicarcaça Novilha Coeficiente de similaridade Jaccard Intersection over Union Carcaça Zootecnia Gordura Animal Bovino |
topic |
Processamento de dados Visão computacional Rede neural U-net Semicarcaça Novilha Coeficiente de similaridade Jaccard Intersection over Union Carcaça Zootecnia Gordura Animal Bovino |
description |
A carne bovina é uma das principais fontes de proteína animal para os seres humanos. No contexto de produção, a análise do acabamento da carcaça torna-se essencial visto sua importância no desempenho animal e exigências nutricionais. A avaliação individualizada das carcaças é inviável para a maioria dos frigoríficos, devido ao significativo número de animais, bem com o tempo e recursos dispendidos. Entretanto, o uso de tecnologia baseada em visão computacional e processamento de imagem, tem se mostrado bastante eficaz no processo de automação de rotina de inspeção. O objetivo deste estudo foi projetar, desenvolver e validar um sistema para estimar o percentual de gordura em semi-carcaças bovinas. Os dados foram coletados em um frigorífico localizado em Sinop e ocorreram entre outubro de 2020 e julho de 2021. A maioria das carcaças vieram de novilhas. Foi proposto um pipeline de visão computacional, o qual foi dividido em três etapas. Na primeira fase, foi realizado um processamento de vídeo para identificar e selecionar corretamente uma imagem contendo apenas a carcaça de interesse. Na segunda parte, foi realizado o pré-processamento e a segmentação para remoção do fundo da imagem e finalmente a estimação do percentual de gordura. Na etapa de segmentação do plano de fundo foi utilizada a rede neural denominada U-net. Para verificar a acurácia desta etapa optou-se pelo coeficiente de similaridade de Jaccard, ou Intersection over Union (IoU). A rede neural U-net treinada para segmentação de fundo da imagem atingiu um IoU médio de 0,96 ao segmentar 171 imagens de testes, demonstrando a boa performance na extração do fundo. O método proposto mostrou-se satisfatório para a realização da tarefa de estimação do percentual de gordura, mas os resultados se restringem a animais fêmeas, sendo necessários outras etapas de validação para ampliar o modelo de estimativa. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021 2022-01-11T01:56:02Z 2022-01-11T01:56:02Z 2022-01-10 |
dc.type.driver.fl_str_mv |
Resumo em anais e proceedings |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
In: ENCONTRO DE CIÊNCIA E TECNOLOGIAS AGROSSUSTENTÁVEIS, 5.; JORNADA CIENTÍFICA DA EMBRAPA AGROSSILVIPASTORIL, 10., 2021. Sinop. Resumos... Brasília, DF: Embrapa, 2021. p. 57. http://www.alice.cnptia.embrapa.br/alice/handle/doc/1138969 |
identifier_str_mv |
In: ENCONTRO DE CIÊNCIA E TECNOLOGIAS AGROSSUSTENTÁVEIS, 5.; JORNADA CIENTÍFICA DA EMBRAPA AGROSSILVIPASTORIL, 10., 2021. Sinop. Resumos... Brasília, DF: Embrapa, 2021. p. 57. |
url |
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1138969 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
collection |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository.name.fl_str_mv |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
cg-riaa@embrapa.br |
_version_ |
1817695627028463616 |