Environmental stratification and genotype recommendation toward the soybean ideotype: a Bayesian approach.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
Texto Completo: | http://www.alice.cnptia.embrapa.br/alice/handle/doc/1139213 https://doi.org/10.1590/1984-70332021v21n1a11 |
Resumo: | The genotype × environment (G×E) interaction plays an essential role in phenotypic expression and can lead to difficulties in genotypes recommendation. Thus, the objectives of this study were: i) propose the Multi-Environment Index Based on Factor Analysis and Ideotype-Design/Markov Chain Monte Carlo (FAI/MCMC index), and ii) apply it for soybean genotypes recommendation. To this end, a data set with 30 soybean genotypes evaluated in 10 environments for grain yield trait was used. Variance components, genetic parameters and genetic values were estimated through MCMC algorithm. Environmental stratification was conducted by factor analyses and the selection of soybean genotypes was performed using the FAI/MCMC index. The results indicated the existence of genotypic variability and G×E interaction. The environments were grouped into three factors. The predicted genetic gains from indirect selection was 4.81%. Thus, our results suggest that the FAI/MCMC index can be successfully used in soybean breeding. |
id |
EMBR_bb6f9848ff3e691c72010c1a5331cfa6 |
---|---|
oai_identifier_str |
oai:www.alice.cnptia.embrapa.br:doc/1139213 |
network_acronym_str |
EMBR |
network_name_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository_id_str |
2154 |
spelling |
Environmental stratification and genotype recommendation toward the soybean ideotype: a Bayesian approach.GenótipoSojaGlycine SojaSeed stratificationGenotypeSoybeansBayesian theoryThe genotype × environment (G×E) interaction plays an essential role in phenotypic expression and can lead to difficulties in genotypes recommendation. Thus, the objectives of this study were: i) propose the Multi-Environment Index Based on Factor Analysis and Ideotype-Design/Markov Chain Monte Carlo (FAI/MCMC index), and ii) apply it for soybean genotypes recommendation. To this end, a data set with 30 soybean genotypes evaluated in 10 environments for grain yield trait was used. Variance components, genetic parameters and genetic values were estimated through MCMC algorithm. Environmental stratification was conducted by factor analyses and the selection of soybean genotypes was performed using the FAI/MCMC index. The results indicated the existence of genotypic variability and G×E interaction. The environments were grouped into three factors. The predicted genetic gains from indirect selection was 4.81%. Thus, our results suggest that the FAI/MCMC index can be successfully used in soybean breeding.JENIFFER SANTANA PINTO COELHO EVANGELISTA, UFV; MARCO ANTÔNIO PEIXOTO, UFV; IGOR FERREIRA COELHO, UFV; RODRIGO SILVA ALVES, UFV; FABYANO FONSECA E SILVA, UFV; MARCOS DEON VILELA DE RESENDE, CNPCa; FELIPE LOPES DA SILVA, UFV; LEONARDO LOPES BHERING, UFV.EVANGELISTA, J. S. P. C.PEIXOTO, M. A.COELHO, I. F.ALVES, R. S.SILVA, F. F. eRESENDE, M. D. V. deSILVA, F. L. daBHERING, L. L.2022-01-21T01:15:57Z2022-01-21T01:15:57Z2022-01-202021info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleCrop Breeding and Applied Biotechnology, v. 21, n. 1, e359721111, 2021.http://www.alice.cnptia.embrapa.br/alice/handle/doc/1139213https://doi.org/10.1590/1984-70332021v21n1a11enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2022-01-21T01:16:06Zoai:www.alice.cnptia.embrapa.br:doc/1139213Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542022-01-21T01:16:06Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
Environmental stratification and genotype recommendation toward the soybean ideotype: a Bayesian approach. |
title |
Environmental stratification and genotype recommendation toward the soybean ideotype: a Bayesian approach. |
spellingShingle |
Environmental stratification and genotype recommendation toward the soybean ideotype: a Bayesian approach. EVANGELISTA, J. S. P. C. Genótipo Soja Glycine Soja Seed stratification Genotype Soybeans Bayesian theory |
title_short |
Environmental stratification and genotype recommendation toward the soybean ideotype: a Bayesian approach. |
title_full |
Environmental stratification and genotype recommendation toward the soybean ideotype: a Bayesian approach. |
title_fullStr |
Environmental stratification and genotype recommendation toward the soybean ideotype: a Bayesian approach. |
title_full_unstemmed |
Environmental stratification and genotype recommendation toward the soybean ideotype: a Bayesian approach. |
title_sort |
Environmental stratification and genotype recommendation toward the soybean ideotype: a Bayesian approach. |
author |
EVANGELISTA, J. S. P. C. |
author_facet |
EVANGELISTA, J. S. P. C. PEIXOTO, M. A. COELHO, I. F. ALVES, R. S. SILVA, F. F. e RESENDE, M. D. V. de SILVA, F. L. da BHERING, L. L. |
author_role |
author |
author2 |
PEIXOTO, M. A. COELHO, I. F. ALVES, R. S. SILVA, F. F. e RESENDE, M. D. V. de SILVA, F. L. da BHERING, L. L. |
author2_role |
author author author author author author author |
dc.contributor.none.fl_str_mv |
JENIFFER SANTANA PINTO COELHO EVANGELISTA, UFV; MARCO ANTÔNIO PEIXOTO, UFV; IGOR FERREIRA COELHO, UFV; RODRIGO SILVA ALVES, UFV; FABYANO FONSECA E SILVA, UFV; MARCOS DEON VILELA DE RESENDE, CNPCa; FELIPE LOPES DA SILVA, UFV; LEONARDO LOPES BHERING, UFV. |
dc.contributor.author.fl_str_mv |
EVANGELISTA, J. S. P. C. PEIXOTO, M. A. COELHO, I. F. ALVES, R. S. SILVA, F. F. e RESENDE, M. D. V. de SILVA, F. L. da BHERING, L. L. |
dc.subject.por.fl_str_mv |
Genótipo Soja Glycine Soja Seed stratification Genotype Soybeans Bayesian theory |
topic |
Genótipo Soja Glycine Soja Seed stratification Genotype Soybeans Bayesian theory |
description |
The genotype × environment (G×E) interaction plays an essential role in phenotypic expression and can lead to difficulties in genotypes recommendation. Thus, the objectives of this study were: i) propose the Multi-Environment Index Based on Factor Analysis and Ideotype-Design/Markov Chain Monte Carlo (FAI/MCMC index), and ii) apply it for soybean genotypes recommendation. To this end, a data set with 30 soybean genotypes evaluated in 10 environments for grain yield trait was used. Variance components, genetic parameters and genetic values were estimated through MCMC algorithm. Environmental stratification was conducted by factor analyses and the selection of soybean genotypes was performed using the FAI/MCMC index. The results indicated the existence of genotypic variability and G×E interaction. The environments were grouped into three factors. The predicted genetic gains from indirect selection was 4.81%. Thus, our results suggest that the FAI/MCMC index can be successfully used in soybean breeding. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021 2022-01-21T01:15:57Z 2022-01-21T01:15:57Z 2022-01-20 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Crop Breeding and Applied Biotechnology, v. 21, n. 1, e359721111, 2021. http://www.alice.cnptia.embrapa.br/alice/handle/doc/1139213 https://doi.org/10.1590/1984-70332021v21n1a11 |
identifier_str_mv |
Crop Breeding and Applied Biotechnology, v. 21, n. 1, e359721111, 2021. |
url |
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1139213 https://doi.org/10.1590/1984-70332021v21n1a11 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
collection |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository.name.fl_str_mv |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
cg-riaa@embrapa.br |
_version_ |
1817695627516051456 |