Environmental stratification and genotype recommendation toward the soybean ideotype: a Bayesian approach.

Detalhes bibliográficos
Autor(a) principal: EVANGELISTA, J. S. P. C.
Data de Publicação: 2021
Outros Autores: PEIXOTO, M. A., COELHO, I. F., ALVES, R. S., SILVA, F. F. e, RESENDE, M. D. V. de, SILVA, F. L. da, BHERING, L. L.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1139213
https://doi.org/10.1590/1984-70332021v21n1a11
Resumo: The genotype × environment (G×E) interaction plays an essential role in phenotypic expression and can lead to difficulties in genotypes recommendation. Thus, the objectives of this study were: i) propose the Multi-Environment Index Based on Factor Analysis and Ideotype-Design/Markov Chain Monte Carlo (FAI/MCMC index), and ii) apply it for soybean genotypes recommendation. To this end, a data set with 30 soybean genotypes evaluated in 10 environments for grain yield trait was used. Variance components, genetic parameters and genetic values were estimated through MCMC algorithm. Environmental stratification was conducted by factor analyses and the selection of soybean genotypes was performed using the FAI/MCMC index. The results indicated the existence of genotypic variability and G×E interaction. The environments were grouped into three factors. The predicted genetic gains from indirect selection was 4.81%. Thus, our results suggest that the FAI/MCMC index can be successfully used in soybean breeding.
id EMBR_bb6f9848ff3e691c72010c1a5331cfa6
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/1139213
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling Environmental stratification and genotype recommendation toward the soybean ideotype: a Bayesian approach.GenótipoSojaGlycine SojaSeed stratificationGenotypeSoybeansBayesian theoryThe genotype × environment (G×E) interaction plays an essential role in phenotypic expression and can lead to difficulties in genotypes recommendation. Thus, the objectives of this study were: i) propose the Multi-Environment Index Based on Factor Analysis and Ideotype-Design/Markov Chain Monte Carlo (FAI/MCMC index), and ii) apply it for soybean genotypes recommendation. To this end, a data set with 30 soybean genotypes evaluated in 10 environments for grain yield trait was used. Variance components, genetic parameters and genetic values were estimated through MCMC algorithm. Environmental stratification was conducted by factor analyses and the selection of soybean genotypes was performed using the FAI/MCMC index. The results indicated the existence of genotypic variability and G×E interaction. The environments were grouped into three factors. The predicted genetic gains from indirect selection was 4.81%. Thus, our results suggest that the FAI/MCMC index can be successfully used in soybean breeding.JENIFFER SANTANA PINTO COELHO EVANGELISTA, UFV; MARCO ANTÔNIO PEIXOTO, UFV; IGOR FERREIRA COELHO, UFV; RODRIGO SILVA ALVES, UFV; FABYANO FONSECA E SILVA, UFV; MARCOS DEON VILELA DE RESENDE, CNPCa; FELIPE LOPES DA SILVA, UFV; LEONARDO LOPES BHERING, UFV.EVANGELISTA, J. S. P. C.PEIXOTO, M. A.COELHO, I. F.ALVES, R. S.SILVA, F. F. eRESENDE, M. D. V. deSILVA, F. L. daBHERING, L. L.2022-01-21T01:15:57Z2022-01-21T01:15:57Z2022-01-202021info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleCrop Breeding and Applied Biotechnology, v. 21, n. 1, e359721111, 2021.http://www.alice.cnptia.embrapa.br/alice/handle/doc/1139213https://doi.org/10.1590/1984-70332021v21n1a11enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2022-01-21T01:16:06Zoai:www.alice.cnptia.embrapa.br:doc/1139213Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542022-01-21T01:16:06Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Environmental stratification and genotype recommendation toward the soybean ideotype: a Bayesian approach.
title Environmental stratification and genotype recommendation toward the soybean ideotype: a Bayesian approach.
spellingShingle Environmental stratification and genotype recommendation toward the soybean ideotype: a Bayesian approach.
EVANGELISTA, J. S. P. C.
Genótipo
Soja
Glycine Soja
Seed stratification
Genotype
Soybeans
Bayesian theory
title_short Environmental stratification and genotype recommendation toward the soybean ideotype: a Bayesian approach.
title_full Environmental stratification and genotype recommendation toward the soybean ideotype: a Bayesian approach.
title_fullStr Environmental stratification and genotype recommendation toward the soybean ideotype: a Bayesian approach.
title_full_unstemmed Environmental stratification and genotype recommendation toward the soybean ideotype: a Bayesian approach.
title_sort Environmental stratification and genotype recommendation toward the soybean ideotype: a Bayesian approach.
author EVANGELISTA, J. S. P. C.
author_facet EVANGELISTA, J. S. P. C.
PEIXOTO, M. A.
COELHO, I. F.
ALVES, R. S.
SILVA, F. F. e
RESENDE, M. D. V. de
SILVA, F. L. da
BHERING, L. L.
author_role author
author2 PEIXOTO, M. A.
COELHO, I. F.
ALVES, R. S.
SILVA, F. F. e
RESENDE, M. D. V. de
SILVA, F. L. da
BHERING, L. L.
author2_role author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv JENIFFER SANTANA PINTO COELHO EVANGELISTA, UFV; MARCO ANTÔNIO PEIXOTO, UFV; IGOR FERREIRA COELHO, UFV; RODRIGO SILVA ALVES, UFV; FABYANO FONSECA E SILVA, UFV; MARCOS DEON VILELA DE RESENDE, CNPCa; FELIPE LOPES DA SILVA, UFV; LEONARDO LOPES BHERING, UFV.
dc.contributor.author.fl_str_mv EVANGELISTA, J. S. P. C.
PEIXOTO, M. A.
COELHO, I. F.
ALVES, R. S.
SILVA, F. F. e
RESENDE, M. D. V. de
SILVA, F. L. da
BHERING, L. L.
dc.subject.por.fl_str_mv Genótipo
Soja
Glycine Soja
Seed stratification
Genotype
Soybeans
Bayesian theory
topic Genótipo
Soja
Glycine Soja
Seed stratification
Genotype
Soybeans
Bayesian theory
description The genotype × environment (G×E) interaction plays an essential role in phenotypic expression and can lead to difficulties in genotypes recommendation. Thus, the objectives of this study were: i) propose the Multi-Environment Index Based on Factor Analysis and Ideotype-Design/Markov Chain Monte Carlo (FAI/MCMC index), and ii) apply it for soybean genotypes recommendation. To this end, a data set with 30 soybean genotypes evaluated in 10 environments for grain yield trait was used. Variance components, genetic parameters and genetic values were estimated through MCMC algorithm. Environmental stratification was conducted by factor analyses and the selection of soybean genotypes was performed using the FAI/MCMC index. The results indicated the existence of genotypic variability and G×E interaction. The environments were grouped into three factors. The predicted genetic gains from indirect selection was 4.81%. Thus, our results suggest that the FAI/MCMC index can be successfully used in soybean breeding.
publishDate 2021
dc.date.none.fl_str_mv 2021
2022-01-21T01:15:57Z
2022-01-21T01:15:57Z
2022-01-20
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv Crop Breeding and Applied Biotechnology, v. 21, n. 1, e359721111, 2021.
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1139213
https://doi.org/10.1590/1984-70332021v21n1a11
identifier_str_mv Crop Breeding and Applied Biotechnology, v. 21, n. 1, e359721111, 2021.
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/1139213
https://doi.org/10.1590/1984-70332021v21n1a11
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1817695627516051456