Lem benchmark database for tropical agricultural remote sensing application.

Detalhes bibliográficos
Autor(a) principal: SANCHES, I. D.
Data de Publicação: 2018
Outros Autores: FEITOSA, R. Q., ACHANCCARAY, P., MONTIBELLER, B., LUIZ, A. J. B., SOARES, M. D., PRUDENTE, V. H. R., VIEIRA, D. C., MAURANO, L. E. P.
Idioma: eng
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1102815
Resumo: Abstract: The monitoring of agricultural activities at a regular basis is crucial to assure that the food production meets the world population demands, which is increasing yearly. Such information can be derived from remote sensing data. In spite of topic?s relevance, not enough efforts have been invested to exploit modern pattern recognition and machine learning methods for agricultural land-cover mapping from multi-temporal, multi-sensor earth observation data. Furthermore, only a small proportion of the works published on this topic relates to tropical/subtropical regions, where crop dynamics is more complicated and difficult to model than in temperate regions. A major hindrance has been the lack of accurate public databases for the comparison of different classification methods. In this context, the aim of the present paper is to share a multi-temporal and multi-sensor benchmark database that can be used by the remote sensing community for agricultural land-cover mapping. Information about crops in situ was collected in Luís Eduardo Magalhães (LEM) municipality, which is an important Brazilian agricultural area, to create field reference data including information about first and second crop harvests. Moreover, a series of remote sensing images was acquired and pre-processed, from both active and passive orbital sensors (Sentinel-1, Sentinel-2/MSI, Landsat-8/OLI), correspondent to the LEM area, along the development of the main annual crops. In this paper, we describe the LEM database (crop field boundaries, land use reference data and pre-processed images) and present the results of an experiment conducted using the Sentinel-1 and Sentinel-2 data.
id EMBR_be137a9e8dc8c7fba6bb637b0fa007e2
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/1102815
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling Lem benchmark database for tropical agricultural remote sensing application.Agricultura tropicalFree available databaseMultispectral instrumentC-band SAR dataAgricultural mapping/monitoringDouble gropping systemsMapeamentoSensoriamento remotoBase de dadosAgriculturaAbstract: The monitoring of agricultural activities at a regular basis is crucial to assure that the food production meets the world population demands, which is increasing yearly. Such information can be derived from remote sensing data. In spite of topic?s relevance, not enough efforts have been invested to exploit modern pattern recognition and machine learning methods for agricultural land-cover mapping from multi-temporal, multi-sensor earth observation data. Furthermore, only a small proportion of the works published on this topic relates to tropical/subtropical regions, where crop dynamics is more complicated and difficult to model than in temperate regions. A major hindrance has been the lack of accurate public databases for the comparison of different classification methods. In this context, the aim of the present paper is to share a multi-temporal and multi-sensor benchmark database that can be used by the remote sensing community for agricultural land-cover mapping. Information about crops in situ was collected in Luís Eduardo Magalhães (LEM) municipality, which is an important Brazilian agricultural area, to create field reference data including information about first and second crop harvests. Moreover, a series of remote sensing images was acquired and pre-processed, from both active and passive orbital sensors (Sentinel-1, Sentinel-2/MSI, Landsat-8/OLI), correspondent to the LEM area, along the development of the main annual crops. In this paper, we describe the LEM database (crop field boundaries, land use reference data and pre-processed images) and present the results of an experiment conducted using the Sentinel-1 and Sentinel-2 data.IEDA DEL'ARCO SANCHES, INPE; RAUL QUEIROZ FEITOSA, PUC Rio; PEDRO ACHANCCARAY, PUC Rio; BRUNO MONTIBELLER, INPE; ALFREDO JOSE BARRETO LUIZ, CNPMA; MARINALVA DIAS SOARES, PUC Rio; VICTOR HUGO ROHDEN PRUDENTE, INPE; D C VIEIRA, INPE; LUIS EDUARDO PINHEIRO MAURANO, INPE.SANCHES, I. D.FEITOSA, R. Q.ACHANCCARAY, P.MONTIBELLER, B.LUIZ, A. J. B.SOARES, M. D.PRUDENTE, V. H. R.VIEIRA, D. C.MAURANO, L. E. P.2019-01-02T23:39:59Z2019-01-02T23:39:59Z2019-01-0220182019-01-02T23:39:59ZArtigo em anais e proceedingsinfo:eu-repo/semantics/publishedVersion387-392.International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, v. 42, n. 1, p. 387-392, 2018. Edition of the proceedings ISPRS TC I Mid-term Symposium ?Innovative Sensing ? From Sensors to Methods and Applications?, 10-12 October 2018, held a Karlsruhe, Germany.http://www.alice.cnptia.embrapa.br/alice/handle/doc/1102815enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2019-01-02T23:40:04Zoai:www.alice.cnptia.embrapa.br:doc/1102815Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542019-01-02T23:40:04Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Lem benchmark database for tropical agricultural remote sensing application.
title Lem benchmark database for tropical agricultural remote sensing application.
spellingShingle Lem benchmark database for tropical agricultural remote sensing application.
SANCHES, I. D.
Agricultura tropical
Free available database
Multispectral instrument
C-band SAR data
Agricultural mapping/monitoring
Double gropping systems
Mapeamento
Sensoriamento remoto
Base de dados
Agricultura
title_short Lem benchmark database for tropical agricultural remote sensing application.
title_full Lem benchmark database for tropical agricultural remote sensing application.
title_fullStr Lem benchmark database for tropical agricultural remote sensing application.
title_full_unstemmed Lem benchmark database for tropical agricultural remote sensing application.
title_sort Lem benchmark database for tropical agricultural remote sensing application.
author SANCHES, I. D.
author_facet SANCHES, I. D.
FEITOSA, R. Q.
ACHANCCARAY, P.
MONTIBELLER, B.
LUIZ, A. J. B.
SOARES, M. D.
PRUDENTE, V. H. R.
VIEIRA, D. C.
MAURANO, L. E. P.
author_role author
author2 FEITOSA, R. Q.
ACHANCCARAY, P.
MONTIBELLER, B.
LUIZ, A. J. B.
SOARES, M. D.
PRUDENTE, V. H. R.
VIEIRA, D. C.
MAURANO, L. E. P.
author2_role author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv IEDA DEL'ARCO SANCHES, INPE; RAUL QUEIROZ FEITOSA, PUC Rio; PEDRO ACHANCCARAY, PUC Rio; BRUNO MONTIBELLER, INPE; ALFREDO JOSE BARRETO LUIZ, CNPMA; MARINALVA DIAS SOARES, PUC Rio; VICTOR HUGO ROHDEN PRUDENTE, INPE; D C VIEIRA, INPE; LUIS EDUARDO PINHEIRO MAURANO, INPE.
dc.contributor.author.fl_str_mv SANCHES, I. D.
FEITOSA, R. Q.
ACHANCCARAY, P.
MONTIBELLER, B.
LUIZ, A. J. B.
SOARES, M. D.
PRUDENTE, V. H. R.
VIEIRA, D. C.
MAURANO, L. E. P.
dc.subject.por.fl_str_mv Agricultura tropical
Free available database
Multispectral instrument
C-band SAR data
Agricultural mapping/monitoring
Double gropping systems
Mapeamento
Sensoriamento remoto
Base de dados
Agricultura
topic Agricultura tropical
Free available database
Multispectral instrument
C-band SAR data
Agricultural mapping/monitoring
Double gropping systems
Mapeamento
Sensoriamento remoto
Base de dados
Agricultura
description Abstract: The monitoring of agricultural activities at a regular basis is crucial to assure that the food production meets the world population demands, which is increasing yearly. Such information can be derived from remote sensing data. In spite of topic?s relevance, not enough efforts have been invested to exploit modern pattern recognition and machine learning methods for agricultural land-cover mapping from multi-temporal, multi-sensor earth observation data. Furthermore, only a small proportion of the works published on this topic relates to tropical/subtropical regions, where crop dynamics is more complicated and difficult to model than in temperate regions. A major hindrance has been the lack of accurate public databases for the comparison of different classification methods. In this context, the aim of the present paper is to share a multi-temporal and multi-sensor benchmark database that can be used by the remote sensing community for agricultural land-cover mapping. Information about crops in situ was collected in Luís Eduardo Magalhães (LEM) municipality, which is an important Brazilian agricultural area, to create field reference data including information about first and second crop harvests. Moreover, a series of remote sensing images was acquired and pre-processed, from both active and passive orbital sensors (Sentinel-1, Sentinel-2/MSI, Landsat-8/OLI), correspondent to the LEM area, along the development of the main annual crops. In this paper, we describe the LEM database (crop field boundaries, land use reference data and pre-processed images) and present the results of an experiment conducted using the Sentinel-1 and Sentinel-2 data.
publishDate 2018
dc.date.none.fl_str_mv 2018
2019-01-02T23:39:59Z
2019-01-02T23:39:59Z
2019-01-02
2019-01-02T23:39:59Z
dc.type.driver.fl_str_mv Artigo em anais e proceedings
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, v. 42, n. 1, p. 387-392, 2018. Edition of the proceedings ISPRS TC I Mid-term Symposium ?Innovative Sensing ? From Sensors to Methods and Applications?, 10-12 October 2018, held a Karlsruhe, Germany.
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1102815
identifier_str_mv International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, v. 42, n. 1, p. 387-392, 2018. Edition of the proceedings ISPRS TC I Mid-term Symposium ?Innovative Sensing ? From Sensors to Methods and Applications?, 10-12 October 2018, held a Karlsruhe, Germany.
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/1102815
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 387-392.
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1817695540156039168