Data mining to estimate broiler mortality when exposed to heat wave.

Detalhes bibliográficos
Autor(a) principal: VALE, M. M.
Data de Publicação: 2008
Outros Autores: MOURA, D. J. de, NÄÄS, I. de A., OLIVEIRA, S. R. de M., RODRIGUES, L. H. A.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/5708
http://dx.doi.org/10.1590/S0103-90162008000300001
Resumo: Heat waves usually result in losses of animal production since they are exposed to thermal stress inducing an increase in mortality and consequent economical losses. Animal science and meteorological databases from the last years contain enough data in the poultry production business to allow the modeling of mortality losses due to heat wave incidence. This research analyzes a database of broiler production associated to climatic data, using data mining techniques such as attribute selection and data classification (decision tree) to model the impact of heat wave incidence on broiler mortality. The temperature and humidity index (THI) was used for screening environmental data. The data mining techniques allowed the development of three comprehensible models for estimating specifically high mortality during broiler production. Two models yielded a classification accuracy of 89.3% by using Principal Component Analysis (PCA) and Wrapper feature selection approaches. Both models obtained a class precision of 0.83 for classifying high mortality. When the feature selection was made by the domain experts, the model accuracy reached 85.7%, while the class precision of high mortality was 0.76. Meteorological data and the calculated THI from meteorological stations were helpful to select the range of harmful environmental conditions for broilers 29 and 42 days old. The data mining techniques were useful for building animal production models.
id EMBR_bf01ef59ebd837131aab115b0d154114
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/5708
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling Data mining to estimate broiler mortality when exposed to heat wave.ITUDados ambientaisMineração de dadosAgropecuáriaData miningFrango de CorteHeat waves usually result in losses of animal production since they are exposed to thermal stress inducing an increase in mortality and consequent economical losses. Animal science and meteorological databases from the last years contain enough data in the poultry production business to allow the modeling of mortality losses due to heat wave incidence. This research analyzes a database of broiler production associated to climatic data, using data mining techniques such as attribute selection and data classification (decision tree) to model the impact of heat wave incidence on broiler mortality. The temperature and humidity index (THI) was used for screening environmental data. The data mining techniques allowed the development of three comprehensible models for estimating specifically high mortality during broiler production. Two models yielded a classification accuracy of 89.3% by using Principal Component Analysis (PCA) and Wrapper feature selection approaches. Both models obtained a class precision of 0.83 for classifying high mortality. When the feature selection was made by the domain experts, the model accuracy reached 85.7%, while the class precision of high mortality was 0.76. Meteorological data and the calculated THI from meteorological stations were helpful to select the range of harmful environmental conditions for broilers 29 and 42 days old. The data mining techniques were useful for building animal production models.MARCOS MARTINEZ VALE, FEAGRI/UNICAMP; DANIELLA JORGE DE MOURA, FEAGRI/UNICAMP; IRENILZA DE ALENCAR NÄÄS, FEAGRI/UNICAMP; STANLEY ROBSON DE MEDEIROS OLIVEIRA, CNPTIA; LUIZ HENRIQUE ANTUNES RODRIGUES, FEAGRI/UNICAMP.VALE, M. M.MOURA, D. J. deNÄÄS, I. de A.OLIVEIRA, S. R. de M.RODRIGUES, L. H. A.2017-04-11T15:52:42Z2017-04-11T15:52:42Z2008-12-1720082017-04-11T15:52:42Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleScientia Agricola, Piracicaba, v. 65, n. 3, p. 223-229, May/June 2008.http://www.alice.cnptia.embrapa.br/alice/handle/doc/5708http://dx.doi.org/10.1590/S0103-90162008000300001enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2017-08-16T04:21:06Zoai:www.alice.cnptia.embrapa.br:doc/5708Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542017-08-16T04:21:06falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542017-08-16T04:21:06Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Data mining to estimate broiler mortality when exposed to heat wave.
title Data mining to estimate broiler mortality when exposed to heat wave.
spellingShingle Data mining to estimate broiler mortality when exposed to heat wave.
VALE, M. M.
ITU
Dados ambientais
Mineração de dados
Agropecuária
Data mining
Frango de Corte
title_short Data mining to estimate broiler mortality when exposed to heat wave.
title_full Data mining to estimate broiler mortality when exposed to heat wave.
title_fullStr Data mining to estimate broiler mortality when exposed to heat wave.
title_full_unstemmed Data mining to estimate broiler mortality when exposed to heat wave.
title_sort Data mining to estimate broiler mortality when exposed to heat wave.
author VALE, M. M.
author_facet VALE, M. M.
MOURA, D. J. de
NÄÄS, I. de A.
OLIVEIRA, S. R. de M.
RODRIGUES, L. H. A.
author_role author
author2 MOURA, D. J. de
NÄÄS, I. de A.
OLIVEIRA, S. R. de M.
RODRIGUES, L. H. A.
author2_role author
author
author
author
dc.contributor.none.fl_str_mv MARCOS MARTINEZ VALE, FEAGRI/UNICAMP; DANIELLA JORGE DE MOURA, FEAGRI/UNICAMP; IRENILZA DE ALENCAR NÄÄS, FEAGRI/UNICAMP; STANLEY ROBSON DE MEDEIROS OLIVEIRA, CNPTIA; LUIZ HENRIQUE ANTUNES RODRIGUES, FEAGRI/UNICAMP.
dc.contributor.author.fl_str_mv VALE, M. M.
MOURA, D. J. de
NÄÄS, I. de A.
OLIVEIRA, S. R. de M.
RODRIGUES, L. H. A.
dc.subject.por.fl_str_mv ITU
Dados ambientais
Mineração de dados
Agropecuária
Data mining
Frango de Corte
topic ITU
Dados ambientais
Mineração de dados
Agropecuária
Data mining
Frango de Corte
description Heat waves usually result in losses of animal production since they are exposed to thermal stress inducing an increase in mortality and consequent economical losses. Animal science and meteorological databases from the last years contain enough data in the poultry production business to allow the modeling of mortality losses due to heat wave incidence. This research analyzes a database of broiler production associated to climatic data, using data mining techniques such as attribute selection and data classification (decision tree) to model the impact of heat wave incidence on broiler mortality. The temperature and humidity index (THI) was used for screening environmental data. The data mining techniques allowed the development of three comprehensible models for estimating specifically high mortality during broiler production. Two models yielded a classification accuracy of 89.3% by using Principal Component Analysis (PCA) and Wrapper feature selection approaches. Both models obtained a class precision of 0.83 for classifying high mortality. When the feature selection was made by the domain experts, the model accuracy reached 85.7%, while the class precision of high mortality was 0.76. Meteorological data and the calculated THI from meteorological stations were helpful to select the range of harmful environmental conditions for broilers 29 and 42 days old. The data mining techniques were useful for building animal production models.
publishDate 2008
dc.date.none.fl_str_mv 2008-12-17
2008
2017-04-11T15:52:42Z
2017-04-11T15:52:42Z
2017-04-11T15:52:42Z
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv Scientia Agricola, Piracicaba, v. 65, n. 3, p. 223-229, May/June 2008.
http://www.alice.cnptia.embrapa.br/alice/handle/doc/5708
http://dx.doi.org/10.1590/S0103-90162008000300001
identifier_str_mv Scientia Agricola, Piracicaba, v. 65, n. 3, p. 223-229, May/June 2008.
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/5708
http://dx.doi.org/10.1590/S0103-90162008000300001
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1794503434616963072