Land use/cover classification in the Brazilian Amazon using satellite images.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
Texto Completo: | http://www.alice.cnptia.embrapa.br/alice/handle/doc/940299 |
Resumo: | Land use/cover classification is one of the most important applications in remote sensing. However, mapping accurate land use/cover spatial distribution is a challenge, particularly in moist tropical regions, due to the complex biophysical environment and limitations of remote sensing data per se. This paper reviews experiments related to land use/cover classification in the Brazilian Amazon for a decade. Through comprehensive analysis of the classification results, it is concluded that spatial information inherent in remote sensing data plays an essential role in improving land use/cover classification. Incorporation of suitable textural images into multispectral bands and use of segmentation?based method are valuable ways to improve land use/cover classification, especially for high spatial resolution images. Data fusion of multi?resolution images within optical sensor data is vital for visual interpretation, but may not improve classification performance. In contrast, integration of optical and radar data did improve classification performance when the proper data fusion method was used. Of the classification algorithms available, the maximum likelihood classifier is still an important method for providing reasonably good accuracy, but nonparametric algorithms, such as classification tree analysis, has the potential to provide better results. However, they often require more time to achieve parametric optimization. Proper use of hierarchical?based methods is fundamental for developing accurate land use/cover classification, mainly from historical remotely sensed data. |
id |
EMBR_c1b830a97e992832b55372fbe4609bc3 |
---|---|
oai_identifier_str |
oai:www.alice.cnptia.embrapa.br:doc/940299 |
network_acronym_str |
EMBR |
network_name_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository_id_str |
2154 |
spelling |
Land use/cover classification in the Brazilian Amazon using satellite images.Data fusionMultiple sensor dataNonparametric classifiersTextureLand use/cover classification is one of the most important applications in remote sensing. However, mapping accurate land use/cover spatial distribution is a challenge, particularly in moist tropical regions, due to the complex biophysical environment and limitations of remote sensing data per se. This paper reviews experiments related to land use/cover classification in the Brazilian Amazon for a decade. Through comprehensive analysis of the classification results, it is concluded that spatial information inherent in remote sensing data plays an essential role in improving land use/cover classification. Incorporation of suitable textural images into multispectral bands and use of segmentation?based method are valuable ways to improve land use/cover classification, especially for high spatial resolution images. Data fusion of multi?resolution images within optical sensor data is vital for visual interpretation, but may not improve classification performance. In contrast, integration of optical and radar data did improve classification performance when the proper data fusion method was used. Of the classification algorithms available, the maximum likelihood classifier is still an important method for providing reasonably good accuracy, but nonparametric algorithms, such as classification tree analysis, has the potential to provide better results. However, they often require more time to achieve parametric optimization. Proper use of hierarchical?based methods is fundamental for developing accurate land use/cover classification, mainly from historical remotely sensed data.DENGSHENG LU, INDIANA UNIVERSITY; MATEUS BATISTELLA, CNPM; GUIYING LI, INDIANA UNIVERSITY; EMILIO MORAN, INDIANA UNIVERSITY; SCOTT HETRICK, INDIANA UNIVERSITY; CORINA DA COSTA FREITAS, INPE; SIDNEI JOÃO SIQUEIRA SANT'ANNA, INPE.LU, D.BATISTELLA, M.LI, G.MORAN, E.HETRICK, S.FREITAS, C. DA C.SANT'ANNA, S. J.2012-11-22T11:11:11Z2012-11-22T11:11:11Z2012-11-2220122014-10-28T11:11:11Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlep. 1185-1208.Pesquisa Agropecuária Brasileira, Brasilia, DF, v. 47, n. 9, p. 1185-1208, set. 2012.http://www.alice.cnptia.embrapa.br/alice/handle/doc/940299dx.doi.org/10.1590/S0100-204X2012000900004enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2017-08-16T01:57:54Zoai:www.alice.cnptia.embrapa.br:doc/940299Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542017-08-16T01:57:54falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542017-08-16T01:57:54Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
Land use/cover classification in the Brazilian Amazon using satellite images. |
title |
Land use/cover classification in the Brazilian Amazon using satellite images. |
spellingShingle |
Land use/cover classification in the Brazilian Amazon using satellite images. LU, D. Data fusion Multiple sensor data Nonparametric classifiers Texture |
title_short |
Land use/cover classification in the Brazilian Amazon using satellite images. |
title_full |
Land use/cover classification in the Brazilian Amazon using satellite images. |
title_fullStr |
Land use/cover classification in the Brazilian Amazon using satellite images. |
title_full_unstemmed |
Land use/cover classification in the Brazilian Amazon using satellite images. |
title_sort |
Land use/cover classification in the Brazilian Amazon using satellite images. |
author |
LU, D. |
author_facet |
LU, D. BATISTELLA, M. LI, G. MORAN, E. HETRICK, S. FREITAS, C. DA C. SANT'ANNA, S. J. |
author_role |
author |
author2 |
BATISTELLA, M. LI, G. MORAN, E. HETRICK, S. FREITAS, C. DA C. SANT'ANNA, S. J. |
author2_role |
author author author author author author |
dc.contributor.none.fl_str_mv |
DENGSHENG LU, INDIANA UNIVERSITY; MATEUS BATISTELLA, CNPM; GUIYING LI, INDIANA UNIVERSITY; EMILIO MORAN, INDIANA UNIVERSITY; SCOTT HETRICK, INDIANA UNIVERSITY; CORINA DA COSTA FREITAS, INPE; SIDNEI JOÃO SIQUEIRA SANT'ANNA, INPE. |
dc.contributor.author.fl_str_mv |
LU, D. BATISTELLA, M. LI, G. MORAN, E. HETRICK, S. FREITAS, C. DA C. SANT'ANNA, S. J. |
dc.subject.por.fl_str_mv |
Data fusion Multiple sensor data Nonparametric classifiers Texture |
topic |
Data fusion Multiple sensor data Nonparametric classifiers Texture |
description |
Land use/cover classification is one of the most important applications in remote sensing. However, mapping accurate land use/cover spatial distribution is a challenge, particularly in moist tropical regions, due to the complex biophysical environment and limitations of remote sensing data per se. This paper reviews experiments related to land use/cover classification in the Brazilian Amazon for a decade. Through comprehensive analysis of the classification results, it is concluded that spatial information inherent in remote sensing data plays an essential role in improving land use/cover classification. Incorporation of suitable textural images into multispectral bands and use of segmentation?based method are valuable ways to improve land use/cover classification, especially for high spatial resolution images. Data fusion of multi?resolution images within optical sensor data is vital for visual interpretation, but may not improve classification performance. In contrast, integration of optical and radar data did improve classification performance when the proper data fusion method was used. Of the classification algorithms available, the maximum likelihood classifier is still an important method for providing reasonably good accuracy, but nonparametric algorithms, such as classification tree analysis, has the potential to provide better results. However, they often require more time to achieve parametric optimization. Proper use of hierarchical?based methods is fundamental for developing accurate land use/cover classification, mainly from historical remotely sensed data. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-11-22T11:11:11Z 2012-11-22T11:11:11Z 2012-11-22 2012 2014-10-28T11:11:11Z |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Pesquisa Agropecuária Brasileira, Brasilia, DF, v. 47, n. 9, p. 1185-1208, set. 2012. http://www.alice.cnptia.embrapa.br/alice/handle/doc/940299 dx.doi.org/10.1590/S0100-204X2012000900004 |
identifier_str_mv |
Pesquisa Agropecuária Brasileira, Brasilia, DF, v. 47, n. 9, p. 1185-1208, set. 2012. dx.doi.org/10.1590/S0100-204X2012000900004 |
url |
http://www.alice.cnptia.embrapa.br/alice/handle/doc/940299 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
p. 1185-1208. |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
collection |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository.name.fl_str_mv |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
cg-riaa@embrapa.br |
_version_ |
1794503372522389504 |