Land use/cover classification in the Brazilian Amazon using satellite images.

Detalhes bibliográficos
Autor(a) principal: LU, D.
Data de Publicação: 2012
Outros Autores: BATISTELLA, M., LI, G., MORAN, E., HETRICK, S., FREITAS, C. DA C., SANT'ANNA, S. J.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/940299
Resumo: Land use/cover classification is one of the most important applications in remote sensing. However, mapping accurate land use/cover spatial distribution is a challenge, particularly in moist tropical regions, due to the complex biophysical environment and limitations of remote sensing data per se. This paper reviews experiments related to land use/cover classification in the Brazilian Amazon for a decade. Through comprehensive analysis of the classification results, it is concluded that spatial information inherent in remote sensing data plays an essential role in improving land use/cover classification. Incorporation of suitable textural images into multispectral bands and use of segmentation?based method are valuable ways to improve land use/cover classification, especially for high spatial resolution images. Data fusion of multi?resolution images within optical sensor data is vital for visual interpretation, but may not improve classification performance. In contrast, integration of optical and radar data did improve classification performance when the proper data fusion method was used. Of the classification algorithms available, the maximum likelihood classifier is still an important method for providing reasonably good accuracy, but nonparametric algorithms, such as classification tree analysis, has the potential to provide better results. However, they often require more time to achieve parametric optimization. Proper use of hierarchical?based methods is fundamental for developing accurate land use/cover classification, mainly from historical remotely sensed data.
id EMBR_c1b830a97e992832b55372fbe4609bc3
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/940299
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling Land use/cover classification in the Brazilian Amazon using satellite images.Data fusionMultiple sensor dataNonparametric classifiersTextureLand use/cover classification is one of the most important applications in remote sensing. However, mapping accurate land use/cover spatial distribution is a challenge, particularly in moist tropical regions, due to the complex biophysical environment and limitations of remote sensing data per se. This paper reviews experiments related to land use/cover classification in the Brazilian Amazon for a decade. Through comprehensive analysis of the classification results, it is concluded that spatial information inherent in remote sensing data plays an essential role in improving land use/cover classification. Incorporation of suitable textural images into multispectral bands and use of segmentation?based method are valuable ways to improve land use/cover classification, especially for high spatial resolution images. Data fusion of multi?resolution images within optical sensor data is vital for visual interpretation, but may not improve classification performance. In contrast, integration of optical and radar data did improve classification performance when the proper data fusion method was used. Of the classification algorithms available, the maximum likelihood classifier is still an important method for providing reasonably good accuracy, but nonparametric algorithms, such as classification tree analysis, has the potential to provide better results. However, they often require more time to achieve parametric optimization. Proper use of hierarchical?based methods is fundamental for developing accurate land use/cover classification, mainly from historical remotely sensed data.DENGSHENG LU, INDIANA UNIVERSITY; MATEUS BATISTELLA, CNPM; GUIYING LI, INDIANA UNIVERSITY; EMILIO MORAN, INDIANA UNIVERSITY; SCOTT HETRICK, INDIANA UNIVERSITY; CORINA DA COSTA FREITAS, INPE; SIDNEI JOÃO SIQUEIRA SANT'ANNA, INPE.LU, D.BATISTELLA, M.LI, G.MORAN, E.HETRICK, S.FREITAS, C. DA C.SANT'ANNA, S. J.2012-11-22T11:11:11Z2012-11-22T11:11:11Z2012-11-2220122014-10-28T11:11:11Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlep. 1185-1208.Pesquisa Agropecuária Brasileira, Brasilia, DF, v. 47, n. 9, p. 1185-1208, set. 2012.http://www.alice.cnptia.embrapa.br/alice/handle/doc/940299dx.doi.org/10.1590/S0100-204X2012000900004enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2017-08-16T01:57:54Zoai:www.alice.cnptia.embrapa.br:doc/940299Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542017-08-16T01:57:54falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542017-08-16T01:57:54Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Land use/cover classification in the Brazilian Amazon using satellite images.
title Land use/cover classification in the Brazilian Amazon using satellite images.
spellingShingle Land use/cover classification in the Brazilian Amazon using satellite images.
LU, D.
Data fusion
Multiple sensor data
Nonparametric classifiers
Texture
title_short Land use/cover classification in the Brazilian Amazon using satellite images.
title_full Land use/cover classification in the Brazilian Amazon using satellite images.
title_fullStr Land use/cover classification in the Brazilian Amazon using satellite images.
title_full_unstemmed Land use/cover classification in the Brazilian Amazon using satellite images.
title_sort Land use/cover classification in the Brazilian Amazon using satellite images.
author LU, D.
author_facet LU, D.
BATISTELLA, M.
LI, G.
MORAN, E.
HETRICK, S.
FREITAS, C. DA C.
SANT'ANNA, S. J.
author_role author
author2 BATISTELLA, M.
LI, G.
MORAN, E.
HETRICK, S.
FREITAS, C. DA C.
SANT'ANNA, S. J.
author2_role author
author
author
author
author
author
dc.contributor.none.fl_str_mv DENGSHENG LU, INDIANA UNIVERSITY; MATEUS BATISTELLA, CNPM; GUIYING LI, INDIANA UNIVERSITY; EMILIO MORAN, INDIANA UNIVERSITY; SCOTT HETRICK, INDIANA UNIVERSITY; CORINA DA COSTA FREITAS, INPE; SIDNEI JOÃO SIQUEIRA SANT'ANNA, INPE.
dc.contributor.author.fl_str_mv LU, D.
BATISTELLA, M.
LI, G.
MORAN, E.
HETRICK, S.
FREITAS, C. DA C.
SANT'ANNA, S. J.
dc.subject.por.fl_str_mv Data fusion
Multiple sensor data
Nonparametric classifiers
Texture
topic Data fusion
Multiple sensor data
Nonparametric classifiers
Texture
description Land use/cover classification is one of the most important applications in remote sensing. However, mapping accurate land use/cover spatial distribution is a challenge, particularly in moist tropical regions, due to the complex biophysical environment and limitations of remote sensing data per se. This paper reviews experiments related to land use/cover classification in the Brazilian Amazon for a decade. Through comprehensive analysis of the classification results, it is concluded that spatial information inherent in remote sensing data plays an essential role in improving land use/cover classification. Incorporation of suitable textural images into multispectral bands and use of segmentation?based method are valuable ways to improve land use/cover classification, especially for high spatial resolution images. Data fusion of multi?resolution images within optical sensor data is vital for visual interpretation, but may not improve classification performance. In contrast, integration of optical and radar data did improve classification performance when the proper data fusion method was used. Of the classification algorithms available, the maximum likelihood classifier is still an important method for providing reasonably good accuracy, but nonparametric algorithms, such as classification tree analysis, has the potential to provide better results. However, they often require more time to achieve parametric optimization. Proper use of hierarchical?based methods is fundamental for developing accurate land use/cover classification, mainly from historical remotely sensed data.
publishDate 2012
dc.date.none.fl_str_mv 2012-11-22T11:11:11Z
2012-11-22T11:11:11Z
2012-11-22
2012
2014-10-28T11:11:11Z
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv Pesquisa Agropecuária Brasileira, Brasilia, DF, v. 47, n. 9, p. 1185-1208, set. 2012.
http://www.alice.cnptia.embrapa.br/alice/handle/doc/940299
dx.doi.org/10.1590/S0100-204X2012000900004
identifier_str_mv Pesquisa Agropecuária Brasileira, Brasilia, DF, v. 47, n. 9, p. 1185-1208, set. 2012.
dx.doi.org/10.1590/S0100-204X2012000900004
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/940299
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv p. 1185-1208.
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1794503372522389504