Satellite estimation of aboveground biomass and impacts of forest stand structure.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2005 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
Texto Completo: | http://www.alice.cnptia.embrapa.br/alice/handle/doc/17490 |
Resumo: | Heterogeneous Amazonian landscapes and complex forest stand structure often make aboveground biomass (AGB) estimation difficult. In this study, spectral mixture analysis was used to convert a Landsat Thematic Mapper (TM) image into green vegetation, shade, and soil fraction images. Entropy was used to analyze the complexity of forest stand structure and to examine impacts of different stand structures on TM reflectance data. The relationships between AGB and fraction images or TM spectral signatures were investigated based on successional and primary forests, respectively, and AGB estimation models were developed for both types of forests. Our findings indicate that the AGB estimation models using fraction images perform better for successional forest biomass estimation than using TM spectral signatures. However, both models based on TM spectral signatures and fractions provided poor performance for primary forest biomass estimation. The complex stand structure and associated canopy shadow greatly reduced relationships between AGB and TM reflectance or fraction images. |
id |
EMBR_c7e5b9b82d6be27a3e54962c78b47e57 |
---|---|
oai_identifier_str |
oai:www.alice.cnptia.embrapa.br:doc/17490 |
network_acronym_str |
EMBR |
network_name_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository_id_str |
2154 |
spelling |
Satellite estimation of aboveground biomass and impacts of forest stand structure.FlorestasMachadinho D´OesteRondôniaImpacto AmbientalVegetaçãoHeterogeneous Amazonian landscapes and complex forest stand structure often make aboveground biomass (AGB) estimation difficult. In this study, spectral mixture analysis was used to convert a Landsat Thematic Mapper (TM) image into green vegetation, shade, and soil fraction images. Entropy was used to analyze the complexity of forest stand structure and to examine impacts of different stand structures on TM reflectance data. The relationships between AGB and fraction images or TM spectral signatures were investigated based on successional and primary forests, respectively, and AGB estimation models were developed for both types of forests. Our findings indicate that the AGB estimation models using fraction images perform better for successional forest biomass estimation than using TM spectral signatures. However, both models based on TM spectral signatures and fractions provided poor performance for primary forest biomass estimation. The complex stand structure and associated canopy shadow greatly reduced relationships between AGB and TM reflectance or fraction images.Indiana University (1,3); Embrapa Monitoramento por Satélite (2).LU, D.BATISTELLA, M.MORAN, E.2014-08-21T06:27:41Z2014-08-21T06:27:41Z2006-05-1220052014-08-21T06:27:41Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlefolhas avulsasp. 967-974.Photogrammetric Engineering and Remote Sensing, v. 71, n. 8, aug. 2005.http://www.alice.cnptia.embrapa.br/alice/handle/doc/17490enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2017-08-16T00:19:40Zoai:www.alice.cnptia.embrapa.br:doc/17490Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542017-08-16T00:19:40falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542017-08-16T00:19:40Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
Satellite estimation of aboveground biomass and impacts of forest stand structure. |
title |
Satellite estimation of aboveground biomass and impacts of forest stand structure. |
spellingShingle |
Satellite estimation of aboveground biomass and impacts of forest stand structure. LU, D. Florestas Machadinho D´Oeste Rondônia Impacto Ambiental Vegetação |
title_short |
Satellite estimation of aboveground biomass and impacts of forest stand structure. |
title_full |
Satellite estimation of aboveground biomass and impacts of forest stand structure. |
title_fullStr |
Satellite estimation of aboveground biomass and impacts of forest stand structure. |
title_full_unstemmed |
Satellite estimation of aboveground biomass and impacts of forest stand structure. |
title_sort |
Satellite estimation of aboveground biomass and impacts of forest stand structure. |
author |
LU, D. |
author_facet |
LU, D. BATISTELLA, M. MORAN, E. |
author_role |
author |
author2 |
BATISTELLA, M. MORAN, E. |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Indiana University (1,3); Embrapa Monitoramento por Satélite (2). |
dc.contributor.author.fl_str_mv |
LU, D. BATISTELLA, M. MORAN, E. |
dc.subject.por.fl_str_mv |
Florestas Machadinho D´Oeste Rondônia Impacto Ambiental Vegetação |
topic |
Florestas Machadinho D´Oeste Rondônia Impacto Ambiental Vegetação |
description |
Heterogeneous Amazonian landscapes and complex forest stand structure often make aboveground biomass (AGB) estimation difficult. In this study, spectral mixture analysis was used to convert a Landsat Thematic Mapper (TM) image into green vegetation, shade, and soil fraction images. Entropy was used to analyze the complexity of forest stand structure and to examine impacts of different stand structures on TM reflectance data. The relationships between AGB and fraction images or TM spectral signatures were investigated based on successional and primary forests, respectively, and AGB estimation models were developed for both types of forests. Our findings indicate that the AGB estimation models using fraction images perform better for successional forest biomass estimation than using TM spectral signatures. However, both models based on TM spectral signatures and fractions provided poor performance for primary forest biomass estimation. The complex stand structure and associated canopy shadow greatly reduced relationships between AGB and TM reflectance or fraction images. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005 2006-05-12 2014-08-21T06:27:41Z 2014-08-21T06:27:41Z 2014-08-21T06:27:41Z |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Photogrammetric Engineering and Remote Sensing, v. 71, n. 8, aug. 2005. http://www.alice.cnptia.embrapa.br/alice/handle/doc/17490 |
identifier_str_mv |
Photogrammetric Engineering and Remote Sensing, v. 71, n. 8, aug. 2005. |
url |
http://www.alice.cnptia.embrapa.br/alice/handle/doc/17490 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
folhas avulsas p. 967-974. |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
collection |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository.name.fl_str_mv |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
cg-riaa@embrapa.br |
_version_ |
1794503393184579584 |