Multivariate bayesian analysis for genetic evaluation and selection of eucalyptus in multiple environment trials.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
Texto Completo: | http://www.alice.cnptia.embrapa.br/alice/handle/doc/1150839 https://doi.org/10.1590/1678-4499.20210347 |
Resumo: | Forest plantations are strong allies in preserving natural resources, providing social and economic benefits. The plantations carried out in the coming years will be vital to meet the growing demand for forest products. To ensure the continuity of genetic progress and the good results achieved with the improvement of forest species, statistical methods that accurately selects superior genotypes are desirable. Multi-trait multi-environment trials are preferred over single-trait single-environment trials, since they can exploit the covariance between traits and environments, increasing the analysis?s prediction power. The Bayesian multi-trait multi-environments approach (BMTME) combines the cited advantages with the parsimony of Bayesian statistics promoting a more informative data analysis. Thus, the aims of this study were to estimate genetic parameters, evaluate genetic variability, and select eucalyptus clones through BMTME models. To this end, a data set with 215 eucalyptus clones evaluated in four environments for diameter at breast height and Pilodyn penetration was used. The Markov Chain Monte Carlo algorithm was applied to estimate the variance components and genetic parameters and to predict the genotypic values. The Smith-Hazel index was used to simultaneously achieve gains with selection for both traits. The BMTME approach provided high accuracies, being a good strategy to the evaluation of multiple environmental trials of Eucalyptus for breeding purposes. |
id |
EMBR_cd9436d0410ba539a048913edd02dfc9 |
---|---|
oai_identifier_str |
oai:www.alice.cnptia.embrapa.br:doc/1150839 |
network_acronym_str |
EMBR |
network_name_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository_id_str |
2154 |
spelling |
Multivariate bayesian analysis for genetic evaluation and selection of eucalyptus in multiple environment trials.Quantitative geneticsMultivariate analysisBayesian theoryEucalyptusForest treesTree breedingForest plantations are strong allies in preserving natural resources, providing social and economic benefits. The plantations carried out in the coming years will be vital to meet the growing demand for forest products. To ensure the continuity of genetic progress and the good results achieved with the improvement of forest species, statistical methods that accurately selects superior genotypes are desirable. Multi-trait multi-environment trials are preferred over single-trait single-environment trials, since they can exploit the covariance between traits and environments, increasing the analysis?s prediction power. The Bayesian multi-trait multi-environments approach (BMTME) combines the cited advantages with the parsimony of Bayesian statistics promoting a more informative data analysis. Thus, the aims of this study were to estimate genetic parameters, evaluate genetic variability, and select eucalyptus clones through BMTME models. To this end, a data set with 215 eucalyptus clones evaluated in four environments for diameter at breast height and Pilodyn penetration was used. The Markov Chain Monte Carlo algorithm was applied to estimate the variance components and genetic parameters and to predict the genotypic values. The Smith-Hazel index was used to simultaneously achieve gains with selection for both traits. The BMTME approach provided high accuracies, being a good strategy to the evaluation of multiple environmental trials of Eucalyptus for breeding purposes.FILIPE MANOEL FERREIRA, UNIVERSIDADE FEDERAL DE VIÇOSA; JENIFFER SANTANA PINTO COELHO EVANGELISTA, UNIVERSIDADE FEDERAL DE VIÇOSA; SAULO FABRÍCIO DA SILVA CHAVES, UNIVERSIDADE FEDERAL DE VIÇOSA; RODRIGO SILVA ALVES, UNIVERSIDADE FEDERAL DE LAVRAS; DANDÁRA BONFIM SILVA, UNIVERSIDADE ESTADUAL PAULISTA JULIO DE MESQUITA FILHO; RENAN GARCIA MALIKOUSKI, UNIVERSIDADE FEDERAL DE VIÇOSA; MARCOS DEON VILELA DE RESENDE, CNPCa; LEONARDO LOPES BHERING, UNIVERSIDADE FEDERAL DE VIÇOSA; GLEISON AUGUSTO SANTOS, UNIVERSIDADE FEDERAL DE VIÇOSA.FERREIRA, F. M.EVANGELISTA, J. S. P. C.CHAVES, S. F. da S.ALVES, R. S.SILVA, D. B.MALIKOUSKI, R. G.RESENDE, M. D. V. deBHERING, L. L.SANTOS, G. A.2023-01-10T16:01:18Z2023-01-10T16:01:18Z2023-01-102022info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article11 p.Bragantia, v. 81, e2922, 2022.http://www.alice.cnptia.embrapa.br/alice/handle/doc/1150839https://doi.org/10.1590/1678-4499.20210347enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2023-01-10T16:01:18Zoai:www.alice.cnptia.embrapa.br:doc/1150839Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542023-01-10T16:01:18falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542023-01-10T16:01:18Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
Multivariate bayesian analysis for genetic evaluation and selection of eucalyptus in multiple environment trials. |
title |
Multivariate bayesian analysis for genetic evaluation and selection of eucalyptus in multiple environment trials. |
spellingShingle |
Multivariate bayesian analysis for genetic evaluation and selection of eucalyptus in multiple environment trials. FERREIRA, F. M. Quantitative genetics Multivariate analysis Bayesian theory Eucalyptus Forest trees Tree breeding |
title_short |
Multivariate bayesian analysis for genetic evaluation and selection of eucalyptus in multiple environment trials. |
title_full |
Multivariate bayesian analysis for genetic evaluation and selection of eucalyptus in multiple environment trials. |
title_fullStr |
Multivariate bayesian analysis for genetic evaluation and selection of eucalyptus in multiple environment trials. |
title_full_unstemmed |
Multivariate bayesian analysis for genetic evaluation and selection of eucalyptus in multiple environment trials. |
title_sort |
Multivariate bayesian analysis for genetic evaluation and selection of eucalyptus in multiple environment trials. |
author |
FERREIRA, F. M. |
author_facet |
FERREIRA, F. M. EVANGELISTA, J. S. P. C. CHAVES, S. F. da S. ALVES, R. S. SILVA, D. B. MALIKOUSKI, R. G. RESENDE, M. D. V. de BHERING, L. L. SANTOS, G. A. |
author_role |
author |
author2 |
EVANGELISTA, J. S. P. C. CHAVES, S. F. da S. ALVES, R. S. SILVA, D. B. MALIKOUSKI, R. G. RESENDE, M. D. V. de BHERING, L. L. SANTOS, G. A. |
author2_role |
author author author author author author author author |
dc.contributor.none.fl_str_mv |
FILIPE MANOEL FERREIRA, UNIVERSIDADE FEDERAL DE VIÇOSA; JENIFFER SANTANA PINTO COELHO EVANGELISTA, UNIVERSIDADE FEDERAL DE VIÇOSA; SAULO FABRÍCIO DA SILVA CHAVES, UNIVERSIDADE FEDERAL DE VIÇOSA; RODRIGO SILVA ALVES, UNIVERSIDADE FEDERAL DE LAVRAS; DANDÁRA BONFIM SILVA, UNIVERSIDADE ESTADUAL PAULISTA JULIO DE MESQUITA FILHO; RENAN GARCIA MALIKOUSKI, UNIVERSIDADE FEDERAL DE VIÇOSA; MARCOS DEON VILELA DE RESENDE, CNPCa; LEONARDO LOPES BHERING, UNIVERSIDADE FEDERAL DE VIÇOSA; GLEISON AUGUSTO SANTOS, UNIVERSIDADE FEDERAL DE VIÇOSA. |
dc.contributor.author.fl_str_mv |
FERREIRA, F. M. EVANGELISTA, J. S. P. C. CHAVES, S. F. da S. ALVES, R. S. SILVA, D. B. MALIKOUSKI, R. G. RESENDE, M. D. V. de BHERING, L. L. SANTOS, G. A. |
dc.subject.por.fl_str_mv |
Quantitative genetics Multivariate analysis Bayesian theory Eucalyptus Forest trees Tree breeding |
topic |
Quantitative genetics Multivariate analysis Bayesian theory Eucalyptus Forest trees Tree breeding |
description |
Forest plantations are strong allies in preserving natural resources, providing social and economic benefits. The plantations carried out in the coming years will be vital to meet the growing demand for forest products. To ensure the continuity of genetic progress and the good results achieved with the improvement of forest species, statistical methods that accurately selects superior genotypes are desirable. Multi-trait multi-environment trials are preferred over single-trait single-environment trials, since they can exploit the covariance between traits and environments, increasing the analysis?s prediction power. The Bayesian multi-trait multi-environments approach (BMTME) combines the cited advantages with the parsimony of Bayesian statistics promoting a more informative data analysis. Thus, the aims of this study were to estimate genetic parameters, evaluate genetic variability, and select eucalyptus clones through BMTME models. To this end, a data set with 215 eucalyptus clones evaluated in four environments for diameter at breast height and Pilodyn penetration was used. The Markov Chain Monte Carlo algorithm was applied to estimate the variance components and genetic parameters and to predict the genotypic values. The Smith-Hazel index was used to simultaneously achieve gains with selection for both traits. The BMTME approach provided high accuracies, being a good strategy to the evaluation of multiple environmental trials of Eucalyptus for breeding purposes. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022 2023-01-10T16:01:18Z 2023-01-10T16:01:18Z 2023-01-10 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Bragantia, v. 81, e2922, 2022. http://www.alice.cnptia.embrapa.br/alice/handle/doc/1150839 https://doi.org/10.1590/1678-4499.20210347 |
identifier_str_mv |
Bragantia, v. 81, e2922, 2022. |
url |
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1150839 https://doi.org/10.1590/1678-4499.20210347 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
11 p. |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
collection |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository.name.fl_str_mv |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
cg-riaa@embrapa.br |
_version_ |
1794503537482268672 |