Multivariate bayesian analysis for genetic evaluation and selection of eucalyptus in multiple environment trials.

Detalhes bibliográficos
Autor(a) principal: FERREIRA, F. M.
Data de Publicação: 2022
Outros Autores: EVANGELISTA, J. S. P. C., CHAVES, S. F. da S., ALVES, R. S., SILVA, D. B., MALIKOUSKI, R. G., RESENDE, M. D. V. de, BHERING, L. L., SANTOS, G. A.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1150839
https://doi.org/10.1590/1678-4499.20210347
Resumo: Forest plantations are strong allies in preserving natural resources, providing social and economic benefits. The plantations carried out in the coming years will be vital to meet the growing demand for forest products. To ensure the continuity of genetic progress and the good results achieved with the improvement of forest species, statistical methods that accurately selects superior genotypes are desirable. Multi-trait multi-environment trials are preferred over single-trait single-environment trials, since they can exploit the covariance between traits and environments, increasing the analysis?s prediction power. The Bayesian multi-trait multi-environments approach (BMTME) combines the cited advantages with the parsimony of Bayesian statistics promoting a more informative data analysis. Thus, the aims of this study were to estimate genetic parameters, evaluate genetic variability, and select eucalyptus clones through BMTME models. To this end, a data set with 215 eucalyptus clones evaluated in four environments for diameter at breast height and Pilodyn penetration was used. The Markov Chain Monte Carlo algorithm was applied to estimate the variance components and genetic parameters and to predict the genotypic values. The Smith-Hazel index was used to simultaneously achieve gains with selection for both traits. The BMTME approach provided high accuracies, being a good strategy to the evaluation of multiple environmental trials of Eucalyptus for breeding purposes.
id EMBR_cd9436d0410ba539a048913edd02dfc9
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/1150839
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling Multivariate bayesian analysis for genetic evaluation and selection of eucalyptus in multiple environment trials.Quantitative geneticsMultivariate analysisBayesian theoryEucalyptusForest treesTree breedingForest plantations are strong allies in preserving natural resources, providing social and economic benefits. The plantations carried out in the coming years will be vital to meet the growing demand for forest products. To ensure the continuity of genetic progress and the good results achieved with the improvement of forest species, statistical methods that accurately selects superior genotypes are desirable. Multi-trait multi-environment trials are preferred over single-trait single-environment trials, since they can exploit the covariance between traits and environments, increasing the analysis?s prediction power. The Bayesian multi-trait multi-environments approach (BMTME) combines the cited advantages with the parsimony of Bayesian statistics promoting a more informative data analysis. Thus, the aims of this study were to estimate genetic parameters, evaluate genetic variability, and select eucalyptus clones through BMTME models. To this end, a data set with 215 eucalyptus clones evaluated in four environments for diameter at breast height and Pilodyn penetration was used. The Markov Chain Monte Carlo algorithm was applied to estimate the variance components and genetic parameters and to predict the genotypic values. The Smith-Hazel index was used to simultaneously achieve gains with selection for both traits. The BMTME approach provided high accuracies, being a good strategy to the evaluation of multiple environmental trials of Eucalyptus for breeding purposes.FILIPE MANOEL FERREIRA, UNIVERSIDADE FEDERAL DE VIÇOSA; JENIFFER SANTANA PINTO COELHO EVANGELISTA, UNIVERSIDADE FEDERAL DE VIÇOSA; SAULO FABRÍCIO DA SILVA CHAVES, UNIVERSIDADE FEDERAL DE VIÇOSA; RODRIGO SILVA ALVES, UNIVERSIDADE FEDERAL DE LAVRAS; DANDÁRA BONFIM SILVA, UNIVERSIDADE ESTADUAL PAULISTA JULIO DE MESQUITA FILHO; RENAN GARCIA MALIKOUSKI, UNIVERSIDADE FEDERAL DE VIÇOSA; MARCOS DEON VILELA DE RESENDE, CNPCa; LEONARDO LOPES BHERING, UNIVERSIDADE FEDERAL DE VIÇOSA; GLEISON AUGUSTO SANTOS, UNIVERSIDADE FEDERAL DE VIÇOSA.FERREIRA, F. M.EVANGELISTA, J. S. P. C.CHAVES, S. F. da S.ALVES, R. S.SILVA, D. B.MALIKOUSKI, R. G.RESENDE, M. D. V. deBHERING, L. L.SANTOS, G. A.2023-01-10T16:01:18Z2023-01-10T16:01:18Z2023-01-102022info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article11 p.Bragantia, v. 81, e2922, 2022.http://www.alice.cnptia.embrapa.br/alice/handle/doc/1150839https://doi.org/10.1590/1678-4499.20210347enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2023-01-10T16:01:18Zoai:www.alice.cnptia.embrapa.br:doc/1150839Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542023-01-10T16:01:18falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542023-01-10T16:01:18Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Multivariate bayesian analysis for genetic evaluation and selection of eucalyptus in multiple environment trials.
title Multivariate bayesian analysis for genetic evaluation and selection of eucalyptus in multiple environment trials.
spellingShingle Multivariate bayesian analysis for genetic evaluation and selection of eucalyptus in multiple environment trials.
FERREIRA, F. M.
Quantitative genetics
Multivariate analysis
Bayesian theory
Eucalyptus
Forest trees
Tree breeding
title_short Multivariate bayesian analysis for genetic evaluation and selection of eucalyptus in multiple environment trials.
title_full Multivariate bayesian analysis for genetic evaluation and selection of eucalyptus in multiple environment trials.
title_fullStr Multivariate bayesian analysis for genetic evaluation and selection of eucalyptus in multiple environment trials.
title_full_unstemmed Multivariate bayesian analysis for genetic evaluation and selection of eucalyptus in multiple environment trials.
title_sort Multivariate bayesian analysis for genetic evaluation and selection of eucalyptus in multiple environment trials.
author FERREIRA, F. M.
author_facet FERREIRA, F. M.
EVANGELISTA, J. S. P. C.
CHAVES, S. F. da S.
ALVES, R. S.
SILVA, D. B.
MALIKOUSKI, R. G.
RESENDE, M. D. V. de
BHERING, L. L.
SANTOS, G. A.
author_role author
author2 EVANGELISTA, J. S. P. C.
CHAVES, S. F. da S.
ALVES, R. S.
SILVA, D. B.
MALIKOUSKI, R. G.
RESENDE, M. D. V. de
BHERING, L. L.
SANTOS, G. A.
author2_role author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv FILIPE MANOEL FERREIRA, UNIVERSIDADE FEDERAL DE VIÇOSA; JENIFFER SANTANA PINTO COELHO EVANGELISTA, UNIVERSIDADE FEDERAL DE VIÇOSA; SAULO FABRÍCIO DA SILVA CHAVES, UNIVERSIDADE FEDERAL DE VIÇOSA; RODRIGO SILVA ALVES, UNIVERSIDADE FEDERAL DE LAVRAS; DANDÁRA BONFIM SILVA, UNIVERSIDADE ESTADUAL PAULISTA JULIO DE MESQUITA FILHO; RENAN GARCIA MALIKOUSKI, UNIVERSIDADE FEDERAL DE VIÇOSA; MARCOS DEON VILELA DE RESENDE, CNPCa; LEONARDO LOPES BHERING, UNIVERSIDADE FEDERAL DE VIÇOSA; GLEISON AUGUSTO SANTOS, UNIVERSIDADE FEDERAL DE VIÇOSA.
dc.contributor.author.fl_str_mv FERREIRA, F. M.
EVANGELISTA, J. S. P. C.
CHAVES, S. F. da S.
ALVES, R. S.
SILVA, D. B.
MALIKOUSKI, R. G.
RESENDE, M. D. V. de
BHERING, L. L.
SANTOS, G. A.
dc.subject.por.fl_str_mv Quantitative genetics
Multivariate analysis
Bayesian theory
Eucalyptus
Forest trees
Tree breeding
topic Quantitative genetics
Multivariate analysis
Bayesian theory
Eucalyptus
Forest trees
Tree breeding
description Forest plantations are strong allies in preserving natural resources, providing social and economic benefits. The plantations carried out in the coming years will be vital to meet the growing demand for forest products. To ensure the continuity of genetic progress and the good results achieved with the improvement of forest species, statistical methods that accurately selects superior genotypes are desirable. Multi-trait multi-environment trials are preferred over single-trait single-environment trials, since they can exploit the covariance between traits and environments, increasing the analysis?s prediction power. The Bayesian multi-trait multi-environments approach (BMTME) combines the cited advantages with the parsimony of Bayesian statistics promoting a more informative data analysis. Thus, the aims of this study were to estimate genetic parameters, evaluate genetic variability, and select eucalyptus clones through BMTME models. To this end, a data set with 215 eucalyptus clones evaluated in four environments for diameter at breast height and Pilodyn penetration was used. The Markov Chain Monte Carlo algorithm was applied to estimate the variance components and genetic parameters and to predict the genotypic values. The Smith-Hazel index was used to simultaneously achieve gains with selection for both traits. The BMTME approach provided high accuracies, being a good strategy to the evaluation of multiple environmental trials of Eucalyptus for breeding purposes.
publishDate 2022
dc.date.none.fl_str_mv 2022
2023-01-10T16:01:18Z
2023-01-10T16:01:18Z
2023-01-10
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv Bragantia, v. 81, e2922, 2022.
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1150839
https://doi.org/10.1590/1678-4499.20210347
identifier_str_mv Bragantia, v. 81, e2922, 2022.
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/1150839
https://doi.org/10.1590/1678-4499.20210347
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 11 p.
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1794503537482268672