Large-scale radiation and energy balances with Landsat 8 images and agrometeorological data in the Brazilian semiarid region.

Detalhes bibliográficos
Autor(a) principal: TEIXEIRA, A. H. de C.
Data de Publicação: 2017
Outros Autores: LEIVAS, J. F., HERNANDEZ, F. B. T., FRANCO, R. A. M.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1073988
Resumo: Aiming to subsidize the rational water resources management, four Landsat 8 (L8) images along different conditions of the year 2014 were used for modeling the radiation and energy balances in the mixed agroecosystems inside a Brazilian reference semiarid area. The SAFER algorithm was applied to calculate the latent heat flux (λE); net radiation (Rn) was acquired by the Slob equation; ground heat flux (G) was considered a fraction of Rn; and the sensible heat flux (H) was retrieved by residue in the energy balance equation. For classifying the vegetation, the surface resistance algorithm (SUREAL) was used to estimate the surface resistance to the water fluxes (rs) with threshold values for rs. Clearly, one could see higher λE values from irrigated crops (ICs) than those for natural vegetation (NV) with some situations of heat horizontal advection. The respective λE, H, and G average ratios to Rn for the ICs ecosystem were 64% to 79%, 18% to 28%, and 3%, respectively. For the NV ecosystem, the corresponding fractions were 4% to 37%, 60% to 94%, and 4%, respectively. The algorithms proved to have strong sensibility to quantifying the large-scale energy and mass exchanges by applying L8 images in mixed agroecosystems of semiarid environments.
id EMBR_d11221c12721486afd358b8d2c0789f0
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/1073988
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling Large-scale radiation and energy balances with Landsat 8 images and agrometeorological data in the Brazilian semiarid region.Energy partitionLatent heat fluxNet radiationSensible heat fluxSoil heat fluxAiming to subsidize the rational water resources management, four Landsat 8 (L8) images along different conditions of the year 2014 were used for modeling the radiation and energy balances in the mixed agroecosystems inside a Brazilian reference semiarid area. The SAFER algorithm was applied to calculate the latent heat flux (λE); net radiation (Rn) was acquired by the Slob equation; ground heat flux (G) was considered a fraction of Rn; and the sensible heat flux (H) was retrieved by residue in the energy balance equation. For classifying the vegetation, the surface resistance algorithm (SUREAL) was used to estimate the surface resistance to the water fluxes (rs) with threshold values for rs. Clearly, one could see higher λE values from irrigated crops (ICs) than those for natural vegetation (NV) with some situations of heat horizontal advection. The respective λE, H, and G average ratios to Rn for the ICs ecosystem were 64% to 79%, 18% to 28%, and 3%, respectively. For the NV ecosystem, the corresponding fractions were 4% to 37%, 60% to 94%, and 4%, respectively. The algorithms proved to have strong sensibility to quantifying the large-scale energy and mass exchanges by applying L8 images in mixed agroecosystems of semiarid environments.ANTONIO HERIBERTO DE C TEIXEIRA, CPATSA; JANICE FREITAS LEIVAS, CNPM; FERNANDO BRAZ TANGERINO HERNANDEZ, UNESP; RENATO ALBERTO MOMESSO FRANCO, UNESP.TEIXEIRA, A. H. de C.LEIVAS, J. F.HERNANDEZ, F. B. T.FRANCO, R. A. M.2017-08-20T10:39:47Z2017-08-20T10:39:47Z2017-08-1420172017-08-20T10:39:47Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlep. 016030-1-016030-15.Journal of Applied Remote Sensing, v. 11, n. 1, jan./mar. 2017.http://www.alice.cnptia.embrapa.br/alice/handle/doc/107398810.1117/1.JRS.11.016030.enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2017-08-22T04:01:51Zoai:www.alice.cnptia.embrapa.br:doc/1073988Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542017-08-22T04:01:51falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542017-08-22T04:01:51Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Large-scale radiation and energy balances with Landsat 8 images and agrometeorological data in the Brazilian semiarid region.
title Large-scale radiation and energy balances with Landsat 8 images and agrometeorological data in the Brazilian semiarid region.
spellingShingle Large-scale radiation and energy balances with Landsat 8 images and agrometeorological data in the Brazilian semiarid region.
TEIXEIRA, A. H. de C.
Energy partition
Latent heat flux
Net radiation
Sensible heat flux
Soil heat flux
title_short Large-scale radiation and energy balances with Landsat 8 images and agrometeorological data in the Brazilian semiarid region.
title_full Large-scale radiation and energy balances with Landsat 8 images and agrometeorological data in the Brazilian semiarid region.
title_fullStr Large-scale radiation and energy balances with Landsat 8 images and agrometeorological data in the Brazilian semiarid region.
title_full_unstemmed Large-scale radiation and energy balances with Landsat 8 images and agrometeorological data in the Brazilian semiarid region.
title_sort Large-scale radiation and energy balances with Landsat 8 images and agrometeorological data in the Brazilian semiarid region.
author TEIXEIRA, A. H. de C.
author_facet TEIXEIRA, A. H. de C.
LEIVAS, J. F.
HERNANDEZ, F. B. T.
FRANCO, R. A. M.
author_role author
author2 LEIVAS, J. F.
HERNANDEZ, F. B. T.
FRANCO, R. A. M.
author2_role author
author
author
dc.contributor.none.fl_str_mv ANTONIO HERIBERTO DE C TEIXEIRA, CPATSA; JANICE FREITAS LEIVAS, CNPM; FERNANDO BRAZ TANGERINO HERNANDEZ, UNESP; RENATO ALBERTO MOMESSO FRANCO, UNESP.
dc.contributor.author.fl_str_mv TEIXEIRA, A. H. de C.
LEIVAS, J. F.
HERNANDEZ, F. B. T.
FRANCO, R. A. M.
dc.subject.por.fl_str_mv Energy partition
Latent heat flux
Net radiation
Sensible heat flux
Soil heat flux
topic Energy partition
Latent heat flux
Net radiation
Sensible heat flux
Soil heat flux
description Aiming to subsidize the rational water resources management, four Landsat 8 (L8) images along different conditions of the year 2014 were used for modeling the radiation and energy balances in the mixed agroecosystems inside a Brazilian reference semiarid area. The SAFER algorithm was applied to calculate the latent heat flux (λE); net radiation (Rn) was acquired by the Slob equation; ground heat flux (G) was considered a fraction of Rn; and the sensible heat flux (H) was retrieved by residue in the energy balance equation. For classifying the vegetation, the surface resistance algorithm (SUREAL) was used to estimate the surface resistance to the water fluxes (rs) with threshold values for rs. Clearly, one could see higher λE values from irrigated crops (ICs) than those for natural vegetation (NV) with some situations of heat horizontal advection. The respective λE, H, and G average ratios to Rn for the ICs ecosystem were 64% to 79%, 18% to 28%, and 3%, respectively. For the NV ecosystem, the corresponding fractions were 4% to 37%, 60% to 94%, and 4%, respectively. The algorithms proved to have strong sensibility to quantifying the large-scale energy and mass exchanges by applying L8 images in mixed agroecosystems of semiarid environments.
publishDate 2017
dc.date.none.fl_str_mv 2017-08-20T10:39:47Z
2017-08-20T10:39:47Z
2017-08-14
2017
2017-08-20T10:39:47Z
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv Journal of Applied Remote Sensing, v. 11, n. 1, jan./mar. 2017.
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1073988
10.1117/1.JRS.11.016030.
identifier_str_mv Journal of Applied Remote Sensing, v. 11, n. 1, jan./mar. 2017.
10.1117/1.JRS.11.016030.
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/1073988
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv p. 016030-1-016030-15.
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1794503441056268288