Realistic and simplified models of plant and leaf area indices for a seasonally dry tropical forest.

Detalhes bibliográficos
Autor(a) principal: MIRANDA, R. de Q.
Data de Publicação: 2019
Outros Autores: NÓBREGA, R. L. B., MOURA, M. S. B. de, RAGHAVANE, S., GALVÍNCIO, J. D.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1114427
Resumo: Leaf Area Index (LAI) models that consider all phenological stages have not been developed for the Caatinga, the largest seasonally dry tropical forest in South America. LAI models that are currently used show moderate to high covariance when compared to in situ data, but they often lack accuracy in the whole spectra of possible values and do not consider the impact that the stems and branches have over LAI estimates, which is of great influence in the Caatinga. In this study, we develop and assess PAI (Plant Area Index) and LAI models by using ground-based measurements and satellite (Landsat) data. The objective of this study was to create and test new empirical models using a multi-year and multi-source of reflectance data. The study was based on measurements of photosynthetic photon flux density (PPFD) from above and below the canopy during the periods of 2011?2012 and 2016?2018. Through iterative processing, we obtained more than a million candidate models for estimating PAI and LAI. To clean up the small discrepancies in the extremes of each interpolated series, we smoothed out the dataset by fitting a logarithmic equation with the PAI data and the inverse contribution of WAI (Wood Area Index) to PAI, that is the portion of PAI that is actually LAI (LAIC). LAIC can be calculated as follows: LAIC = 1 (WAI/PAI)). We subtracted the WAI values from the PAI to develop our in situ LAI dataset that was used for further analysis. Our in situ dataset was also used as a reference to compare our models with four other models used for the Caatinga, as well as the MODIS-derived LAI products (MCD15A3H/A2H). Our main findings were as follows: (i) Six models use NDVI (Normalized Difference Vegetation Index), SAVI (Soil-Adjusted Vegetation Index) and EVI (Enhanced Vegetation Index) as input, and performed well, with r2 ranging from 0.77 to 0.79 (PAI) and 0.76 to 0.81 (LAI), and RMSE with a minimum of 0.41m2m?2 (PAI) and 0.40m2m?2 (LAI). The SAVI models showed values 20% and 32% (PAI), and 21% and 15% (LAI) smaller than those found for the models that use EVI and NDVI, respectively; (ii) the other models (ten) use only two bands, and in contrast to the first six models, these new models may abstract other physical processes and components, such as leaves etiolation and increasing protochlorophyll. The developed models used the near-infrared band, and they varied only in relation to the inclusion of the red, green, and blue bands. (iii) All previously published models and MODIS-LAI underperformed against our calibrated models. Our study was able to provide several PAI and LAI models that realistically represent the phenology of the Caatinga.
id EMBR_d2176621f690068aa4c8358e484bf06c
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/1114427
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling Realistic and simplified models of plant and leaf area indices for a seasonally dry tropical forest.SemiáridoÍndice de área arborizadaÍndice de área foliarPlant Area IndexCaatingaFloresta TropicalFenologiaLandsatTropical forestsPhenologyLeaf Area Index (LAI) models that consider all phenological stages have not been developed for the Caatinga, the largest seasonally dry tropical forest in South America. LAI models that are currently used show moderate to high covariance when compared to in situ data, but they often lack accuracy in the whole spectra of possible values and do not consider the impact that the stems and branches have over LAI estimates, which is of great influence in the Caatinga. In this study, we develop and assess PAI (Plant Area Index) and LAI models by using ground-based measurements and satellite (Landsat) data. The objective of this study was to create and test new empirical models using a multi-year and multi-source of reflectance data. The study was based on measurements of photosynthetic photon flux density (PPFD) from above and below the canopy during the periods of 2011?2012 and 2016?2018. Through iterative processing, we obtained more than a million candidate models for estimating PAI and LAI. To clean up the small discrepancies in the extremes of each interpolated series, we smoothed out the dataset by fitting a logarithmic equation with the PAI data and the inverse contribution of WAI (Wood Area Index) to PAI, that is the portion of PAI that is actually LAI (LAIC). LAIC can be calculated as follows: LAIC = 1 (WAI/PAI)). We subtracted the WAI values from the PAI to develop our in situ LAI dataset that was used for further analysis. Our in situ dataset was also used as a reference to compare our models with four other models used for the Caatinga, as well as the MODIS-derived LAI products (MCD15A3H/A2H). Our main findings were as follows: (i) Six models use NDVI (Normalized Difference Vegetation Index), SAVI (Soil-Adjusted Vegetation Index) and EVI (Enhanced Vegetation Index) as input, and performed well, with r2 ranging from 0.77 to 0.79 (PAI) and 0.76 to 0.81 (LAI), and RMSE with a minimum of 0.41m2m?2 (PAI) and 0.40m2m?2 (LAI). The SAVI models showed values 20% and 32% (PAI), and 21% and 15% (LAI) smaller than those found for the models that use EVI and NDVI, respectively; (ii) the other models (ten) use only two bands, and in contrast to the first six models, these new models may abstract other physical processes and components, such as leaves etiolation and increasing protochlorophyll. The developed models used the near-infrared band, and they varied only in relation to the inclusion of the red, green, and blue bands. (iii) All previously published models and MODIS-LAI underperformed against our calibrated models. Our study was able to provide several PAI and LAI models that realistically represent the phenology of the Caatinga.Rodrigo de Queiroga Miranda, UFPE; Rodolfo Luiz Bezerra Nóbrega, University of Reading, Reading, UK; MAGNA SOELMA BESERRA DE MOURA, CPATSA; Srinivasan Raghavane, Texas A&M University, College Station, TX, USA; Josiclêda Domiciano Galvíncio, UFPE.MIRANDA, R. de Q.NÓBREGA, R. L. B.MOURA, M. S. B. deRAGHAVANE, S.GALVÍNCIO, J. D.2019-11-18T18:05:31Z2019-11-18T18:05:31Z2019-11-1820202020-04-17T11:11:11Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleInternational Journal of Applied Earth Observation and Geoinformation, v. 85, 2020.http://www.alice.cnptia.embrapa.br/alice/handle/doc/111442710.1016/j.jag.2019.101992enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2019-11-18T18:05:38Zoai:www.alice.cnptia.embrapa.br:doc/1114427Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542019-11-18T18:05:38falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542019-11-18T18:05:38Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Realistic and simplified models of plant and leaf area indices for a seasonally dry tropical forest.
title Realistic and simplified models of plant and leaf area indices for a seasonally dry tropical forest.
spellingShingle Realistic and simplified models of plant and leaf area indices for a seasonally dry tropical forest.
MIRANDA, R. de Q.
Semiárido
Índice de área arborizada
Índice de área foliar
Plant Area Index
Caatinga
Floresta Tropical
Fenologia
Landsat
Tropical forests
Phenology
title_short Realistic and simplified models of plant and leaf area indices for a seasonally dry tropical forest.
title_full Realistic and simplified models of plant and leaf area indices for a seasonally dry tropical forest.
title_fullStr Realistic and simplified models of plant and leaf area indices for a seasonally dry tropical forest.
title_full_unstemmed Realistic and simplified models of plant and leaf area indices for a seasonally dry tropical forest.
title_sort Realistic and simplified models of plant and leaf area indices for a seasonally dry tropical forest.
author MIRANDA, R. de Q.
author_facet MIRANDA, R. de Q.
NÓBREGA, R. L. B.
MOURA, M. S. B. de
RAGHAVANE, S.
GALVÍNCIO, J. D.
author_role author
author2 NÓBREGA, R. L. B.
MOURA, M. S. B. de
RAGHAVANE, S.
GALVÍNCIO, J. D.
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Rodrigo de Queiroga Miranda, UFPE; Rodolfo Luiz Bezerra Nóbrega, University of Reading, Reading, UK; MAGNA SOELMA BESERRA DE MOURA, CPATSA; Srinivasan Raghavane, Texas A&M University, College Station, TX, USA; Josiclêda Domiciano Galvíncio, UFPE.
dc.contributor.author.fl_str_mv MIRANDA, R. de Q.
NÓBREGA, R. L. B.
MOURA, M. S. B. de
RAGHAVANE, S.
GALVÍNCIO, J. D.
dc.subject.por.fl_str_mv Semiárido
Índice de área arborizada
Índice de área foliar
Plant Area Index
Caatinga
Floresta Tropical
Fenologia
Landsat
Tropical forests
Phenology
topic Semiárido
Índice de área arborizada
Índice de área foliar
Plant Area Index
Caatinga
Floresta Tropical
Fenologia
Landsat
Tropical forests
Phenology
description Leaf Area Index (LAI) models that consider all phenological stages have not been developed for the Caatinga, the largest seasonally dry tropical forest in South America. LAI models that are currently used show moderate to high covariance when compared to in situ data, but they often lack accuracy in the whole spectra of possible values and do not consider the impact that the stems and branches have over LAI estimates, which is of great influence in the Caatinga. In this study, we develop and assess PAI (Plant Area Index) and LAI models by using ground-based measurements and satellite (Landsat) data. The objective of this study was to create and test new empirical models using a multi-year and multi-source of reflectance data. The study was based on measurements of photosynthetic photon flux density (PPFD) from above and below the canopy during the periods of 2011?2012 and 2016?2018. Through iterative processing, we obtained more than a million candidate models for estimating PAI and LAI. To clean up the small discrepancies in the extremes of each interpolated series, we smoothed out the dataset by fitting a logarithmic equation with the PAI data and the inverse contribution of WAI (Wood Area Index) to PAI, that is the portion of PAI that is actually LAI (LAIC). LAIC can be calculated as follows: LAIC = 1 (WAI/PAI)). We subtracted the WAI values from the PAI to develop our in situ LAI dataset that was used for further analysis. Our in situ dataset was also used as a reference to compare our models with four other models used for the Caatinga, as well as the MODIS-derived LAI products (MCD15A3H/A2H). Our main findings were as follows: (i) Six models use NDVI (Normalized Difference Vegetation Index), SAVI (Soil-Adjusted Vegetation Index) and EVI (Enhanced Vegetation Index) as input, and performed well, with r2 ranging from 0.77 to 0.79 (PAI) and 0.76 to 0.81 (LAI), and RMSE with a minimum of 0.41m2m?2 (PAI) and 0.40m2m?2 (LAI). The SAVI models showed values 20% and 32% (PAI), and 21% and 15% (LAI) smaller than those found for the models that use EVI and NDVI, respectively; (ii) the other models (ten) use only two bands, and in contrast to the first six models, these new models may abstract other physical processes and components, such as leaves etiolation and increasing protochlorophyll. The developed models used the near-infrared band, and they varied only in relation to the inclusion of the red, green, and blue bands. (iii) All previously published models and MODIS-LAI underperformed against our calibrated models. Our study was able to provide several PAI and LAI models that realistically represent the phenology of the Caatinga.
publishDate 2019
dc.date.none.fl_str_mv 2019-11-18T18:05:31Z
2019-11-18T18:05:31Z
2019-11-18
2020
2020-04-17T11:11:11Z
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv International Journal of Applied Earth Observation and Geoinformation, v. 85, 2020.
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1114427
10.1016/j.jag.2019.101992
identifier_str_mv International Journal of Applied Earth Observation and Geoinformation, v. 85, 2020.
10.1016/j.jag.2019.101992
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/1114427
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1794503483898986496