Detecting and classifying pests in crops using proximal images and machine learning: a review.

Detalhes bibliográficos
Autor(a) principal: BARBEDO, J. G. A.
Data de Publicação: 2020
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1125314
https://doi.org/10.3390/ai1020021
Resumo: Abstract: Pest management is among the most important activities in a farm. Monitoring all different species visually may not be effective, especially in large properties. Accordingly, considerable research effort has been spent towards the development of effective ways to remotely monitor potential infestations. A growing number of solutions combine proximal digital images with machine learning techniques, but since species and conditions associated to each study vary considerably, it is difficult to draw a realistic picture of the actual state of the art on the subject. In this context, the objectives of this article are (1) to briefly describe some of the most relevant investigations on the subject of automatic pest detection using proximal digital images and machine learning; (2) to provide a unified overview of the research carried out so far, with special emphasis to research gaps that still linger; (3) to propose some possible targets for future research.
id EMBR_d3accdc76513f0524eb80c61eb79805b
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/1125314
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling Detecting and classifying pests in crops using proximal images and machine learning: a review.Aprendizado de máquinaImagem digitalImagens digitaisMonitoramento de pragasPest detectionMachine learningAgricultural cropsInfestaçãoInsetoPest monitoringInsectsDigital imagesAbstract: Pest management is among the most important activities in a farm. Monitoring all different species visually may not be effective, especially in large properties. Accordingly, considerable research effort has been spent towards the development of effective ways to remotely monitor potential infestations. A growing number of solutions combine proximal digital images with machine learning techniques, but since species and conditions associated to each study vary considerably, it is difficult to draw a realistic picture of the actual state of the art on the subject. In this context, the objectives of this article are (1) to briefly describe some of the most relevant investigations on the subject of automatic pest detection using proximal digital images and machine learning; (2) to provide a unified overview of the research carried out so far, with special emphasis to research gaps that still linger; (3) to propose some possible targets for future research.JAYME GARCIA ARNAL BARBEDO, CNPTIA.BARBEDO, J. G. A.2020-10-07T09:14:47Z2020-10-07T09:14:47Z2020-10-062020info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleAI, v. 1, n. 2, p. 312-328, June 2020.http://www.alice.cnptia.embrapa.br/alice/handle/doc/1125314https://doi.org/10.3390/ai1020021enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2020-10-07T09:14:53Zoai:www.alice.cnptia.embrapa.br:doc/1125314Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542020-10-07T09:14:53falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542020-10-07T09:14:53Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Detecting and classifying pests in crops using proximal images and machine learning: a review.
title Detecting and classifying pests in crops using proximal images and machine learning: a review.
spellingShingle Detecting and classifying pests in crops using proximal images and machine learning: a review.
BARBEDO, J. G. A.
Aprendizado de máquina
Imagem digital
Imagens digitais
Monitoramento de pragas
Pest detection
Machine learning
Agricultural crops
Infestação
Inseto
Pest monitoring
Insects
Digital images
title_short Detecting and classifying pests in crops using proximal images and machine learning: a review.
title_full Detecting and classifying pests in crops using proximal images and machine learning: a review.
title_fullStr Detecting and classifying pests in crops using proximal images and machine learning: a review.
title_full_unstemmed Detecting and classifying pests in crops using proximal images and machine learning: a review.
title_sort Detecting and classifying pests in crops using proximal images and machine learning: a review.
author BARBEDO, J. G. A.
author_facet BARBEDO, J. G. A.
author_role author
dc.contributor.none.fl_str_mv JAYME GARCIA ARNAL BARBEDO, CNPTIA.
dc.contributor.author.fl_str_mv BARBEDO, J. G. A.
dc.subject.por.fl_str_mv Aprendizado de máquina
Imagem digital
Imagens digitais
Monitoramento de pragas
Pest detection
Machine learning
Agricultural crops
Infestação
Inseto
Pest monitoring
Insects
Digital images
topic Aprendizado de máquina
Imagem digital
Imagens digitais
Monitoramento de pragas
Pest detection
Machine learning
Agricultural crops
Infestação
Inseto
Pest monitoring
Insects
Digital images
description Abstract: Pest management is among the most important activities in a farm. Monitoring all different species visually may not be effective, especially in large properties. Accordingly, considerable research effort has been spent towards the development of effective ways to remotely monitor potential infestations. A growing number of solutions combine proximal digital images with machine learning techniques, but since species and conditions associated to each study vary considerably, it is difficult to draw a realistic picture of the actual state of the art on the subject. In this context, the objectives of this article are (1) to briefly describe some of the most relevant investigations on the subject of automatic pest detection using proximal digital images and machine learning; (2) to provide a unified overview of the research carried out so far, with special emphasis to research gaps that still linger; (3) to propose some possible targets for future research.
publishDate 2020
dc.date.none.fl_str_mv 2020-10-07T09:14:47Z
2020-10-07T09:14:47Z
2020-10-06
2020
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv AI, v. 1, n. 2, p. 312-328, June 2020.
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1125314
https://doi.org/10.3390/ai1020021
identifier_str_mv AI, v. 1, n. 2, p. 312-328, June 2020.
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/1125314
https://doi.org/10.3390/ai1020021
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1794503496027865088