Detecting and classifying pests in crops using proximal images and machine learning: a review.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
Texto Completo: | http://www.alice.cnptia.embrapa.br/alice/handle/doc/1125314 https://doi.org/10.3390/ai1020021 |
Resumo: | Abstract: Pest management is among the most important activities in a farm. Monitoring all different species visually may not be effective, especially in large properties. Accordingly, considerable research effort has been spent towards the development of effective ways to remotely monitor potential infestations. A growing number of solutions combine proximal digital images with machine learning techniques, but since species and conditions associated to each study vary considerably, it is difficult to draw a realistic picture of the actual state of the art on the subject. In this context, the objectives of this article are (1) to briefly describe some of the most relevant investigations on the subject of automatic pest detection using proximal digital images and machine learning; (2) to provide a unified overview of the research carried out so far, with special emphasis to research gaps that still linger; (3) to propose some possible targets for future research. |
id |
EMBR_d3accdc76513f0524eb80c61eb79805b |
---|---|
oai_identifier_str |
oai:www.alice.cnptia.embrapa.br:doc/1125314 |
network_acronym_str |
EMBR |
network_name_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository_id_str |
2154 |
spelling |
Detecting and classifying pests in crops using proximal images and machine learning: a review.Aprendizado de máquinaImagem digitalImagens digitaisMonitoramento de pragasPest detectionMachine learningAgricultural cropsInfestaçãoInsetoPest monitoringInsectsDigital imagesAbstract: Pest management is among the most important activities in a farm. Monitoring all different species visually may not be effective, especially in large properties. Accordingly, considerable research effort has been spent towards the development of effective ways to remotely monitor potential infestations. A growing number of solutions combine proximal digital images with machine learning techniques, but since species and conditions associated to each study vary considerably, it is difficult to draw a realistic picture of the actual state of the art on the subject. In this context, the objectives of this article are (1) to briefly describe some of the most relevant investigations on the subject of automatic pest detection using proximal digital images and machine learning; (2) to provide a unified overview of the research carried out so far, with special emphasis to research gaps that still linger; (3) to propose some possible targets for future research.JAYME GARCIA ARNAL BARBEDO, CNPTIA.BARBEDO, J. G. A.2020-10-07T09:14:47Z2020-10-07T09:14:47Z2020-10-062020info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleAI, v. 1, n. 2, p. 312-328, June 2020.http://www.alice.cnptia.embrapa.br/alice/handle/doc/1125314https://doi.org/10.3390/ai1020021enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2020-10-07T09:14:53Zoai:www.alice.cnptia.embrapa.br:doc/1125314Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542020-10-07T09:14:53falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542020-10-07T09:14:53Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
Detecting and classifying pests in crops using proximal images and machine learning: a review. |
title |
Detecting and classifying pests in crops using proximal images and machine learning: a review. |
spellingShingle |
Detecting and classifying pests in crops using proximal images and machine learning: a review. BARBEDO, J. G. A. Aprendizado de máquina Imagem digital Imagens digitais Monitoramento de pragas Pest detection Machine learning Agricultural crops Infestação Inseto Pest monitoring Insects Digital images |
title_short |
Detecting and classifying pests in crops using proximal images and machine learning: a review. |
title_full |
Detecting and classifying pests in crops using proximal images and machine learning: a review. |
title_fullStr |
Detecting and classifying pests in crops using proximal images and machine learning: a review. |
title_full_unstemmed |
Detecting and classifying pests in crops using proximal images and machine learning: a review. |
title_sort |
Detecting and classifying pests in crops using proximal images and machine learning: a review. |
author |
BARBEDO, J. G. A. |
author_facet |
BARBEDO, J. G. A. |
author_role |
author |
dc.contributor.none.fl_str_mv |
JAYME GARCIA ARNAL BARBEDO, CNPTIA. |
dc.contributor.author.fl_str_mv |
BARBEDO, J. G. A. |
dc.subject.por.fl_str_mv |
Aprendizado de máquina Imagem digital Imagens digitais Monitoramento de pragas Pest detection Machine learning Agricultural crops Infestação Inseto Pest monitoring Insects Digital images |
topic |
Aprendizado de máquina Imagem digital Imagens digitais Monitoramento de pragas Pest detection Machine learning Agricultural crops Infestação Inseto Pest monitoring Insects Digital images |
description |
Abstract: Pest management is among the most important activities in a farm. Monitoring all different species visually may not be effective, especially in large properties. Accordingly, considerable research effort has been spent towards the development of effective ways to remotely monitor potential infestations. A growing number of solutions combine proximal digital images with machine learning techniques, but since species and conditions associated to each study vary considerably, it is difficult to draw a realistic picture of the actual state of the art on the subject. In this context, the objectives of this article are (1) to briefly describe some of the most relevant investigations on the subject of automatic pest detection using proximal digital images and machine learning; (2) to provide a unified overview of the research carried out so far, with special emphasis to research gaps that still linger; (3) to propose some possible targets for future research. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-10-07T09:14:47Z 2020-10-07T09:14:47Z 2020-10-06 2020 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
AI, v. 1, n. 2, p. 312-328, June 2020. http://www.alice.cnptia.embrapa.br/alice/handle/doc/1125314 https://doi.org/10.3390/ai1020021 |
identifier_str_mv |
AI, v. 1, n. 2, p. 312-328, June 2020. |
url |
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1125314 https://doi.org/10.3390/ai1020021 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
collection |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository.name.fl_str_mv |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
cg-riaa@embrapa.br |
_version_ |
1794503496027865088 |