Uso de classificadores para o mapeamento da vegetação nativa de cerrado.

Detalhes bibliográficos
Autor(a) principal: REYNALDO, E. F.
Data de Publicação: 2009
Outros Autores: POVH, F. P., SABOYA, L. M. F., VILELA, M. de F.
Tipo de documento: Capítulo de livro
Idioma: por
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/572160
Resumo: ABSTRACT- The environment is in constant change, and for a better comprehension of these changes it is necessary observations with an amplitude of temporal and spatial scales. The use of geoprocessing and remote sensing techniques to identify the modifications promoted by human race in the environment are becoming more frequent, highlighting the monitoring of deforestation and illegal burning. In this work the objective was to realize the mapping of savannah native vegetation using an image CCD/CBERS-2 and the classification methods visual, supervised and non supervised. The work was realized in the municipal district of Gurupi, TO, coordinates 11° 44' 47" S and 49° 04' 15" W. The delimitation of the area was defined by the map SC-22-Z-DIV-4-NE from the Brazilian Institute of Geography and Statistics (IBGE), scale of 1:25.000, with a total area of 19,093.19 ha. After the image registration it was obtained a mean error of 0.48 pixel or 9.6 m. After the classification using the different methods it is possible to say that for local conditions, the visual and supervised classifications were the most indicated, mapping an area of 6,112.19 and 4,173.40 ha, respectively. The non supervised classification mapped an area of 6,646.00 ha. The exactitude indices were considered excellent for visual and supervised classification. The previous knowledge about the area was indispensable to the results of the visual and supervised classifications. A non supervised classification with a reduced number of classes could reduce the excess of similar classes and increase the exactitude indices for the classification, according to local conditions.
id EMBR_deb0ca31b52e09dd617e3c954575bcf6
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/572160
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling Uso de classificadores para o mapeamento da vegetação nativa de cerrado.Processamento de imagemPreservação ambientalMeio AmbienteRecurso NaturalSensoriamento RemotoVegetação NativaDeforestationRemote sensingABSTRACT- The environment is in constant change, and for a better comprehension of these changes it is necessary observations with an amplitude of temporal and spatial scales. The use of geoprocessing and remote sensing techniques to identify the modifications promoted by human race in the environment are becoming more frequent, highlighting the monitoring of deforestation and illegal burning. In this work the objective was to realize the mapping of savannah native vegetation using an image CCD/CBERS-2 and the classification methods visual, supervised and non supervised. The work was realized in the municipal district of Gurupi, TO, coordinates 11° 44' 47" S and 49° 04' 15" W. The delimitation of the area was defined by the map SC-22-Z-DIV-4-NE from the Brazilian Institute of Geography and Statistics (IBGE), scale of 1:25.000, with a total area of 19,093.19 ha. After the image registration it was obtained a mean error of 0.48 pixel or 9.6 m. After the classification using the different methods it is possible to say that for local conditions, the visual and supervised classifications were the most indicated, mapping an area of 6,112.19 and 4,173.40 ha, respectively. The non supervised classification mapped an area of 6,646.00 ha. The exactitude indices were considered excellent for visual and supervised classification. The previous knowledge about the area was indispensable to the results of the visual and supervised classifications. A non supervised classification with a reduced number of classes could reduce the excess of similar classes and increase the exactitude indices for the classification, according to local conditions.ÉTORE FRANCISCO REYNALDO, UNIVERSIDADE DE SÃO PAULO; FABRÍCIO PINHEIRO POVH, UNIVERSIDADE DE SÃO PAULO; LUCIANO MARCELO FALLÉ SABOYA, UNIVERSIDADE FEDERAL DE TOCANTINS; MARINA DE FATIMA VILELA, CPAC.REYNALDO, E. F.POVH, F. P.SABOYA, L. M. F.VILELA, M. de F.2023-03-21T14:50:43Z2023-03-21T14:50:43Z2009-07-302009info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookPartp. 4279-4286.In: SIMPÓSIO BRASILEIRO DE SENSORIAMENTO REMOTO, 14., 2009, Natal. Anais... São José dos Campos: INPE, 2009.http://www.alice.cnptia.embrapa.br/alice/handle/doc/572160porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2023-03-21T14:50:43Zoai:www.alice.cnptia.embrapa.br:doc/572160Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542023-03-21T14:50:43falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542023-03-21T14:50:43Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Uso de classificadores para o mapeamento da vegetação nativa de cerrado.
title Uso de classificadores para o mapeamento da vegetação nativa de cerrado.
spellingShingle Uso de classificadores para o mapeamento da vegetação nativa de cerrado.
REYNALDO, E. F.
Processamento de imagem
Preservação ambiental
Meio Ambiente
Recurso Natural
Sensoriamento Remoto
Vegetação Nativa
Deforestation
Remote sensing
title_short Uso de classificadores para o mapeamento da vegetação nativa de cerrado.
title_full Uso de classificadores para o mapeamento da vegetação nativa de cerrado.
title_fullStr Uso de classificadores para o mapeamento da vegetação nativa de cerrado.
title_full_unstemmed Uso de classificadores para o mapeamento da vegetação nativa de cerrado.
title_sort Uso de classificadores para o mapeamento da vegetação nativa de cerrado.
author REYNALDO, E. F.
author_facet REYNALDO, E. F.
POVH, F. P.
SABOYA, L. M. F.
VILELA, M. de F.
author_role author
author2 POVH, F. P.
SABOYA, L. M. F.
VILELA, M. de F.
author2_role author
author
author
dc.contributor.none.fl_str_mv ÉTORE FRANCISCO REYNALDO, UNIVERSIDADE DE SÃO PAULO; FABRÍCIO PINHEIRO POVH, UNIVERSIDADE DE SÃO PAULO; LUCIANO MARCELO FALLÉ SABOYA, UNIVERSIDADE FEDERAL DE TOCANTINS; MARINA DE FATIMA VILELA, CPAC.
dc.contributor.author.fl_str_mv REYNALDO, E. F.
POVH, F. P.
SABOYA, L. M. F.
VILELA, M. de F.
dc.subject.por.fl_str_mv Processamento de imagem
Preservação ambiental
Meio Ambiente
Recurso Natural
Sensoriamento Remoto
Vegetação Nativa
Deforestation
Remote sensing
topic Processamento de imagem
Preservação ambiental
Meio Ambiente
Recurso Natural
Sensoriamento Remoto
Vegetação Nativa
Deforestation
Remote sensing
description ABSTRACT- The environment is in constant change, and for a better comprehension of these changes it is necessary observations with an amplitude of temporal and spatial scales. The use of geoprocessing and remote sensing techniques to identify the modifications promoted by human race in the environment are becoming more frequent, highlighting the monitoring of deforestation and illegal burning. In this work the objective was to realize the mapping of savannah native vegetation using an image CCD/CBERS-2 and the classification methods visual, supervised and non supervised. The work was realized in the municipal district of Gurupi, TO, coordinates 11° 44' 47" S and 49° 04' 15" W. The delimitation of the area was defined by the map SC-22-Z-DIV-4-NE from the Brazilian Institute of Geography and Statistics (IBGE), scale of 1:25.000, with a total area of 19,093.19 ha. After the image registration it was obtained a mean error of 0.48 pixel or 9.6 m. After the classification using the different methods it is possible to say that for local conditions, the visual and supervised classifications were the most indicated, mapping an area of 6,112.19 and 4,173.40 ha, respectively. The non supervised classification mapped an area of 6,646.00 ha. The exactitude indices were considered excellent for visual and supervised classification. The previous knowledge about the area was indispensable to the results of the visual and supervised classifications. A non supervised classification with a reduced number of classes could reduce the excess of similar classes and increase the exactitude indices for the classification, according to local conditions.
publishDate 2009
dc.date.none.fl_str_mv 2009-07-30
2009
2023-03-21T14:50:43Z
2023-03-21T14:50:43Z
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/bookPart
format bookPart
status_str publishedVersion
dc.identifier.uri.fl_str_mv In: SIMPÓSIO BRASILEIRO DE SENSORIAMENTO REMOTO, 14., 2009, Natal. Anais... São José dos Campos: INPE, 2009.
http://www.alice.cnptia.embrapa.br/alice/handle/doc/572160
identifier_str_mv In: SIMPÓSIO BRASILEIRO DE SENSORIAMENTO REMOTO, 14., 2009, Natal. Anais... São José dos Campos: INPE, 2009.
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/572160
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv p. 4279-4286.
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1794503541683912704